A374148 Integer part of (2^(n - 1) - 1)*sqrt(3) + 1.
0, 1, 2, 6, 13, 26, 54, 110, 220, 442, 886, 1772, 3546, 7093, 14188, 28377, 56755, 113510, 227022, 454045, 908092, 1816186, 3632373, 7264746, 14529494, 29058989, 58117980, 116235961, 232471923, 464943847, 929887695, 1859775392, 3719550786, 7439101572
Offset: 0
References
- F. K. Hwang, D. S. Richards, and P. Winter, The Steiner tree problem, Annals of Discrete Mathematics, Amsterdam: North-Holland, 53 (1992).
Links
- Robert Bridges, Minimal Steiner Trees for Three Dimensional Networks, Mathematical Gazette, Vol. 78, July 1994, Number 482, pp. 157-162.
- Fan Chung, Martin Gardner, and Ron Graham, Steiner trees on a checkboard, Mathematics Magazine, Vol. 62, April 1989, pp. 83-96.
- MathOverflow, Joining the 2^k points of {0,1}^k with the shortest tree.
Crossrefs
Cf. A002194.
Programs
-
Mathematica
a[n_]:= Floor[Sqrt[3]*(2^(n - 1) - 1) + 1]; Array[a,34,0] (* Stefano Spezia, Jun 29 2024 *)
-
Python
from math import isqrt def A374148(n): return 1+isqrt(3*((1<
Chai Wah Wu, Jun 30 2024
Formula
a(n) = floor(sqrt(3)*(2^(n - 1) - 1) + 1).
Comments