cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374163 a(1) = 1; for n>1 a(n) is the minimum value of k > 0 such that sigma^{k}(n)-1 is prime, if such a k exists; otherwise -1, where sigma^{k} is the k-th iteration of sigma=A000203.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 1, 1, 5, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 7, 1, 2, 2, 7, 1, 3, 1, 1, 2, 1, 2, 1, 1, 2, 8, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 7, 2
Offset: 1

Views

Author

Rafik Khalfi, Jun 29 2024

Keywords

Examples

			For n=12, sigma^{4}(12)-1 = 360-1 = 359 is prime, and there is no positive k<4 such that sigma^{k}(12)-1 is prime, so a(12)=4.
		

Crossrefs

Programs

  • Maple
    sigma_iterate := proc (n, k)
        local sigma_result, i:
        sigma_result := n:
        for i to k do
            sigma_result := sigma(sigma_result)
        end do:
        return sigma_result
    end proc:
    find_min_k := proc (n)
        local k, sigma_k_n, prime_candidate:
        k := 0:
        do
            k := k+1:
            sigma_k_n := sigma_iterate(n, k):
            prime_candidate := sigma_k_n - 1:
            if isprime(prime_candidate) then
                return k
            end if
        end do
    end proc:
    map(find_min_k, [$ 2 .. 100]);
  • Mathematica
    A374163[n_] := If[n==1, 1, Length[NestWhileList[DivisorSigma[1, #]&, n, !PrimeQ[# - 1]&, {2, 1}]] - 1]; Array[A374163, 100] (* Paolo Xausa, Jul 24 2024 *)
  • PARI
    a(n) = my(k=1, s=sigma(n)); while(!isprime(s-1), k++; s = sigma(s)); k; \\ Michel Marcus, Jun 29 2024

Extensions

Offset corrected by N. J. A. Sloane, Jul 25 2024