A373745 Maximum length of a run of alternating bits in the base-2 representation of prime(n).
2, 1, 3, 1, 3, 3, 2, 2, 3, 3, 1, 4, 4, 5, 3, 5, 3, 3, 2, 2, 3, 2, 4, 3, 2, 4, 2, 5, 3, 2, 1, 2, 3, 4, 6, 4, 3, 4, 4, 5, 3, 5, 3, 2, 4, 2, 4, 3, 2, 4, 4, 3, 2, 3, 2, 2, 3, 2, 6, 2, 3, 4, 2, 3, 2, 3, 4, 6, 5, 5, 3, 3, 3, 5, 3, 3, 4, 3, 3, 2, 4, 4, 5, 3, 3, 3, 2, 3, 3, 2, 4, 3, 2, 5
Offset: 1
Examples
149 = prime(35) = 10010101_2 has two alternating bit runs of lengths 2 and 6: 10_010101, and thus a(35) = 6.
Programs
-
Maple
b:= n-> `if`(n<2, [n$2], (f-> (t-> [t, max(t, f[2])])( `if`(n mod 4 in {0, 3}, 1, f[1]+1)))(b(iquo(n, 2)))): a:= n-> b(ithprime(n))[2]: seq(a(n), n=1..94); # Alois P. Heinz, Jul 08 2024
-
Python
from sympy import prime def A373745(n): s = bin(prime(n))[2:] return next(i for i in range(len(s),0,-1) if ('01'*(i+1>>1))[:i] in s or ('10'*(i+1>>1))[:i] in s) # Chai Wah Wu, Jul 10 2024