A374201 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A048679(A328845(i))) = A278222(A048679(A328845(j))), for all i, j >= 1, where A328845 is a Fibonacci-based variant of the arithmetic derivative.
1, 1, 2, 2, 3, 2, 3, 2, 4, 4, 5, 2, 4, 2, 6, 7, 4, 2, 6, 2, 8, 9, 10, 2, 4, 7, 8, 6, 11, 2, 8, 2, 11, 8, 12, 7, 4, 2, 12, 13, 7, 2, 11, 2, 8, 8, 13, 2, 7, 10, 7, 8, 14, 2, 15, 7, 13, 12, 10, 2, 8, 2, 12, 7, 10, 13, 5, 2, 16, 17, 5, 2, 7, 2, 13, 7, 15, 16, 18, 2, 7, 18, 12, 2, 8, 19, 20, 13, 7, 2, 8, 18, 16, 12, 10, 21, 13, 2, 8, 9, 16
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..75025
Crossrefs
Programs
-
PARI
up_to = 75025; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649 A003714(n) = { my(s=0,w); while(n>2, w = A072649(n); s += 2^(w-1); n -= fibonacci(w+1)); (s+n); } A106151(n) = { my(s=0, i=0); while(n, if(2!=(n%4), s += (n%2)<>= 1); (s); }; A048679(n) = if(!n,n,A106151(2*A003714(n))); A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; A278222(n) = A046523(A005940(1+n)); A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])/f[i, 1])); v374201 = rgs_transform(vector(1+up_to, n, A278222(A048679(A328845(n-1))))); A374201(n) = v374201[1+n];
Comments