A374211 Lexicographically earliest infinite sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), with f(1) = 1, and for n > 1, f(n) = [A278226(A328768(n)), A374212(n), A374213(n)], where A328768 is the first primorial based variant of the arithmetic derivative, and A374212 and A374213 are its 2- and 3-adic valuations.
1, 2, 3, 4, 5, 6, 5, 7, 7, 8, 5, 9, 5, 10, 11, 12, 5, 13, 5, 14, 15, 16, 5, 17, 7, 8, 18, 19, 5, 16, 5, 20, 21, 22, 23, 24, 5, 25, 26, 27, 5, 28, 5, 29, 30, 31, 5, 32, 7, 33, 17, 34, 5, 35, 36, 37, 38, 39, 5, 40, 5, 10, 41, 23, 42, 43, 5, 29, 44, 45, 5, 46, 5, 47, 48, 49, 50, 51, 5, 52, 53, 54, 5, 44, 55, 16, 34, 56, 5, 57, 58, 26, 15, 59, 60, 20, 5, 61, 62, 29
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
up_to = 100000; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A002110(n) = prod(i=1,n,prime(i)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A278226(n) = A046523(A276086(n)); A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1])); Aux374211(n) = if(1==n, n, my(u=A328768(n)); [A278226(u), valuation(u, 2), valuation(u, 3)]); v374211 = rgs_transform(vector(up_to, n, Aux374211(n))); A374211(n) = v374211[n];
Comments