cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A374211 Lexicographically earliest infinite sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), with f(1) = 1, and for n > 1, f(n) = [A278226(A328768(n)), A374212(n), A374213(n)], where A328768 is the first primorial based variant of the arithmetic derivative, and A374212 and A374213 are its 2- and 3-adic valuations.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 5, 7, 7, 8, 5, 9, 5, 10, 11, 12, 5, 13, 5, 14, 15, 16, 5, 17, 7, 8, 18, 19, 5, 16, 5, 20, 21, 22, 23, 24, 5, 25, 26, 27, 5, 28, 5, 29, 30, 31, 5, 32, 7, 33, 17, 34, 5, 35, 36, 37, 38, 39, 5, 40, 5, 10, 41, 23, 42, 43, 5, 29, 44, 45, 5, 46, 5, 47, 48, 49, 50, 51, 5, 52, 53, 54, 5, 44, 55, 16, 34, 56, 5, 57, 58, 26, 15, 59, 60, 20, 5, 61, 62, 29
Offset: 1

Views

Author

Antti Karttunen, Jun 30 2024

Keywords

Comments

Restricted growth sequence transform of the function f given in the definition.
For all i, j >= 1:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A152822(i) = A152822(j),
a(i) = a(j) => A373982(i) = A373982(j) => A328771(i) = A328771(j),
a(i) = a(j) => A373991(i) = A373991(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A002110(n) = prod(i=1,n,prime(i));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A278226(n) = A046523(A276086(n));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    Aux374211(n) = if(1==n, n, my(u=A328768(n)); [A278226(u), valuation(u, 2), valuation(u, 3)]);
    v374211 = rgs_transform(vector(up_to, n, Aux374211(n)));
    A374211(n) = v374211[n];

A328768 The first primorial based variant of arithmetic derivative: a(prime(i)) = A002110(i-1), where prime(i) = A000040(i), a(u*v) = a(u)*v + u*a(v), with a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 7, 30, 12, 12, 17, 210, 20, 2310, 67, 28, 32, 30030, 33, 510510, 44, 104, 431, 9699690, 52, 60, 4633, 54, 148, 223092870, 71, 6469693230, 80, 652, 60077, 192, 84, 200560490130, 1021039, 6956, 108, 7420738134810, 229, 304250263527210, 884, 114, 19399403, 13082761331670030, 128, 420, 145, 90124, 9292, 614889782588491410, 135, 1116, 324
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2019

Keywords

Crossrefs

Cf. A042965 (indices of even terms), A016825 (of odd terms), A152822 (antiparity of terms), A373992 (indices of multiples of 3), A374212 (2-adic valuation), A374213 (3-adic valuation), A374123 [a(n) mod 360].
Cf. A374031 [gcd(a(n), A276085(n))], A374116 [gcd(a(n), A328845(n))].
For variants of the same formula, see A003415, A258851, A328769, A328845, A328846, A371192.

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    
  • PARI
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i, 1]))/(f[i, 1]^2)));

Formula

a(n) = n * Sum e_j * A276085(p_j)/p_j for n = Product p_j^e_j, where for primes p, A276085(p) = A002110(A000720(p)-1).
a(n) = n * Sum e_j * (p_j)#/(p_j^2) for n = Product p_j^e_j with (p_j)# = A034386(p_j).
For all n >= 0, A276150(a(n)) = A328771(n).

A374205 The 5-adic valuation of A328845(n), where A328845 is a Fibonacci-based variant of the arithmetic derivative.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 2, 1, 0, 0, 1, 2, 3
Offset: 2

Views

Author

Antti Karttunen, Jul 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A374205[n_] := IntegerExponent[n*Total[MapApply[#2*Fibonacci[#]/# &, FactorInteger[n]]], 5];
    Array[A374205, 100, 2] (* Paolo Xausa, Dec 16 2024 *)
  • PARI
    A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])/f[i, 1]));
    A374205(n) = valuation(A328845(n), 5);

Formula

a(n) = A112765(A328845(n)).

A374212 The 2-adic valuation of A328768(n), where A328768 is the first primorial based variant of the arithmetic derivative.

Original entry on oeis.org

0, 1, 2, 1, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 5, 1, 0, 1, 2, 3, 0, 1, 2, 2, 0, 1, 2, 1, 0, 1, 4, 2, 0, 6, 2, 1, 0, 2, 2, 1, 0, 1, 2, 1, 0, 1, 7, 2, 0, 2, 2, 1, 0, 2, 2, 4, 0, 1, 2, 1, 0, 1, 6, 2, 0, 1, 2, 2, 0, 1, 2, 1, 0, 1, 2, 3, 0, 1, 8, 3, 0, 1, 2, 2, 0, 2, 2, 1, 0, 4, 2, 3, 0, 3, 4, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2
Offset: 2

Views

Author

Antti Karttunen, Jun 30 2024

Keywords

Crossrefs

Cf. also A374132, A374213.

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1]));
    A374212(n) = valuation(A328768(n), 2);

Formula

a(n) = A007814(A328768(n)).

A374207 The 3-adic valuation of A113177(n), where A113177 is fully additive with a(p) = Fibonacci(p).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 3, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 2

Views

Author

Antti Karttunen, Jul 01 2024

Keywords

Crossrefs

Cf. A007949, A113177, A374051, A374052 (indices of nonzero terms).

Programs

  • PARI
    A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])));
    A374207(n) = valuation(A113177(n), 3);

Formula

a(n) = A007949(A113177(n)).

A374203 The 3-adic valuation of A328845(n), where A328845 is a Fibonacci-based variant of the arithmetic derivative.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 4
Offset: 2

Views

Author

Antti Karttunen, Jul 01 2024

Keywords

Crossrefs

Cf. A007949, A328845, A374121, A374122 (after its 2 initial terms, gives the indices of nonzero terms in this sequence).

Programs

  • Mathematica
    A374203[n_] := IntegerExponent[n*Total[MapApply[#2*Fibonacci[#]/# &, FactorInteger[n]]], 3];
    Array[A374203, 100, 2] (* Paolo Xausa, Dec 16 2024 *)
  • PARI
    A328845(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])/f[i, 1]));
    A374203(n) = valuation(A328845(n), 3);

Formula

a(n) = A007949(A328845(n)).
Showing 1-6 of 6 results.