A376319 A Catalan-like sequence formed by summing the truncation of the terms of the fourth convolution of the Catalan Triangle where the number of row terms are truncated to ceiling((n+4)*log(3)/log(2)) - (n+4).
1, 4, 14, 34, 103, 228, 665, 2096, 4787, 14239, 31330, 91728, 199328, 580128, 1834665, 4223092, 12667903, 28207395, 83435822, 267154051, 623837740, 1891453021, 4265101202, 12735718304, 28359351604, 84126071303, 270338873771, 634653510356, 1933488496208
Offset: 1
Examples
When n=6, number of terms is restricted to 6, dropping 2 terms from the standard triangle; ceiling((6+4)*log(3)/log(2)) - (6+4) = 6. When n=9, number of terms is restricted to 8, dropping 3 terms; ceiling((9+4)*log(3)/log(2)) - (9+4) = 8. etc. Truncating A002057 at this point, with dropped terms indicated by - and summing the remaining triangle terms in the normal way results in: n sum truncated triangle terms 1 1 = 1; 2 4 = 1, 1, 1, 1; 3 14 = 1, 2, 3, 4, 4; 4 34 = 1, 3, 6, 10, 14, -; 5 103 = 1, 4, 10, 20, 34, 34, -; 6 228 = 1, 5, 15, 35, 69, 103, -, -; 7 665 = 1, 6, 21, 56, 125, 228, 228, -, -; 8 2096 = 1, 7, 28, 84, 209, 437, 665, 665, -, -; 9 4787 = 1, 8, 36, 120, 329, 766, 1431, 2096, -, -, -; 10 14239 = 1, 9, 45, 165, 494, 1260, 2691, 4787, 4787, -, -, -; ...
Programs
-
PARI
lista(nn) = { my(terms(j)=ceil((j+4)*log(3)/log(2)) - (j+4)); my(T=vector(nn)); my(S=vector(nn)); for(y=1, nn, if(y==1, T[1]=[1]; S[1]=1 , my(k=terms(y)); T[y]=vector(k); for(i=1, k, if(i==1,T[y][i]=1,if(i<=length(T[y-1]),T[y][i]=T[y-1][i]+T[y][i-1],T[y][i]=T[y][i-1]))); S[y]=vecsum(T[y]) ); ); S; }
Formula
Same as for a normal fourth convolution Catalan triangle T(n,k), read by rows, each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j) but where j is limited to the truncated length.
Comments