cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374256 a(n) is the smallest number which can be represented as the sum of n distinct positive n-th powers in exactly 2 ways, or -1 if no such number exists.

Original entry on oeis.org

-1, 65, 1009, 6834, 1158224, 19198660, 1518471174, 301963223843, 14599274102522, 1601155487573222
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(2) = 65 = 1^2 + 8^2 = 4^2 + 7^2.
a(3) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) uses priqueue;
      local pq,w,t,g,i,count,newt;
      g:= proc(t) local i; [-add((t[i]+i)^n,i=1..n),op(t)] end proc;
      w:= [0$(n+1)];
      initialize(pq);
      insert(g([0$n]),pq);
      do
        t:= extract(pq);
        if t[1] = w[1] then return -t[1] fi;
        w:= t;
        for i from 2 to n+1 do
            if t[i]=t[-1] then
              newt:= g(t[2..-1] + [0$(i-2),1$(n+2-i)]);
            insert(newt,pq);
      fi od od;
    end proc:
    -1, seq(f(n),n=2..10); # Robert Israel, Jul 01 2024

Extensions

a(9)-a(10) from Robert Israel, Jul 01 2024

A374271 a(n) is the smallest number which can be represented as the sum of n distinct n-th powers of primes in exactly 3 ways, or -1 if no such number exists.

Original entry on oeis.org

-1, 2210, 8627527, 616151524, 876639080351
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 02 2024

Keywords

Examples

			a(2) = 2210 = 19^2 + 43^2 = 23^2 + 41^2 = 29^2 + 37^2.
a(3) = 8627527 = 19^3 + 151^3 + 173^3 = 23^3 + 139^3 + 181^3 = 71^3 + 73^3 + 199^3.
		

Crossrefs

A374269 a(n) is the smallest number which can be represented as the sum of n distinct positive n-th powers in exactly 4 ways, or -1 if no such number exists.

Original entry on oeis.org

-1, 1105, 13896, 300834, 1386406515, 2063792939
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 02 2024

Keywords

Examples

			a(2) = 1105 = 4^2 + 33^2 = 9^2 + 32^2 = 12^2 + 31^2 = 23^2 + 24^2.
a(3) = 13896 = 1^3 + 12^3 + 23^3 = 2^3 + 4^3 + 24^3 = 4^3 + 18^3 + 20^3 = 9^3 + 10^3 + 23^3.
		

Crossrefs

Extensions

a(6) from Michael S. Branicky, Jul 09 2024
Showing 1-3 of 3 results.