A374260 Decimal expansion of the Euclidean length of the shortest circuit covering all the vertices of the cube [0,1]^3.
1, 5, 3, 8, 2, 0, 7, 5, 1, 2, 1, 3, 8, 4, 4, 7, 3, 4, 9, 7, 1, 1, 4, 9, 6, 4, 7, 9, 4, 6, 2, 8, 9, 9, 4, 0, 9, 8, 7, 3, 9, 0, 7, 5, 8, 6, 9, 0, 8, 4, 4, 5, 0, 7, 3, 0, 8, 2, 6, 7, 5, 0, 8, 8, 8, 3, 4, 9, 5, 4, 7, 2, 6, 8, 5, 3, 2, 8, 3, 4, 3, 5, 8, 9, 3, 3, 8
Offset: 2
Examples
15.382075121384473497114964794628994098739075869...
Links
- Matematicamente.it, Problema di minimizzazione con un triangolo rettangolo.
- Roberto Rinaldi and Marco Ripà, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, arXiv:2212.11216 [math.CO], 2022.
Programs
-
PARI
my(x=solve(x=1.5, 1.7, 4-8*x^2-4*x^4+x^8)); 2*(sqrt(1 + 1/x^2) + 1/x)*(2 + x*sqrt(2)) \\ Hugo Pfoertner, Jul 01 2024
Formula
Equals 2*(2+sqrt(2)*x)*(1/x+sqrt(1+1/x^2)), where x = (1/2)*sqrt((2/3)^(2/3)*((9+sqrt(177)))^(1/3) - 4*(2/(27+3*sqrt(177)))^(1/3)) + (1/2)*sqrt(4*(2/(27+3*sqrt(177)))^(1/3) - (2/3)^(2/3)*(9+sqrt(177))^(1/3) + 4*sqrt(2/((2/3)^(2/3)*(9+sqrt(177))^(1/3) - 4*(2/(27+3*sqrt(177)))^(1/3)))) = 1.59792093355003207476470...
Comments