cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374291 Squares of powerful numbers.

Original entry on oeis.org

1, 16, 64, 81, 256, 625, 729, 1024, 1296, 2401, 4096, 5184, 6561, 10000, 11664, 14641, 15625, 16384, 20736, 28561, 38416, 40000, 46656, 50625, 59049, 65536, 82944, 83521, 104976, 117649, 130321, 153664, 160000, 186624, 194481, 234256, 250000, 262144, 279841, 331776
Offset: 1

Views

Author

Amiram Eldar, Jul 02 2024

Keywords

Comments

First differs from A340588 at n = 12.
4-full (or 3-full) squares.
Numbers whose exponents in their prime factorization are all even numbers >= 4.
This sequence is closed under multiplication.
The sequence {A000290(n)*A078615(A000290(n)), n>=1} is a permutation of this sequence, and the sequence {a(n)/A078615(a(n)), n>=1} is a permutation of {A000290(n), n>=1}.
The sequence {A335988(n)*A007947(A335988(n)), n>=1} is a permutation of this sequence, and the sequence {a(n)/A007947(a(n)), n>=1} is a permutation of A335988.

Crossrefs

Intersection of A000290 and A036967 (or A036966).
Intersection of A000290 and A337050.
Subsequence of A322449.

Programs

  • Mathematica
    powQ[n_] := n==1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[600], powQ]^2
  • PARI
    is(k) = issquare(k) && ispowerful(sqrtint(k));
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A374291(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c
        return bisection(f,n,n)**2 # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A000290(A001694(n)) = A001694(n)^2.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p^2-1))) = zeta(4)*zeta(6)/zeta(12) = 15015/(1382*Pi^2) = 1.10082313486953808844... .
Sum_{n>=1} 1/a(n)^s = Product_{p prime} (1 + 1/(p^(2*s)*(p^(2*s)-1))) = zeta(4*s)*zeta(6*s)/zeta(12*s), for s > 1/4.