A374321 Number of partitions of [n] such that the number of blocks of size k is zero or equals k for every k.
1, 1, 0, 0, 3, 15, 0, 0, 0, 280, 2800, 0, 0, 600600, 8408400, 0, 2627625, 44669625, 0, 0, 38192529375, 802043116875, 0, 0, 0, 1508282884484376, 39215354996593776, 0, 0, 107469680368165243128, 3224090411044957293840, 0, 0, 0, 76290792475347121351680
Offset: 0
Keywords
Examples
a(0) = 1: the empty partition. a(1) = 1: 1. a(4) = 3: 12|34, 13|24, 14|23. a(5) = 15: 12|34|5, 12|35|4, 12|3|45, 13|24|5, 13|25|4, 13|2|45, 14|23|5, 15|23|4, 1|23|45, 14|25|3, 14|2|35, 15|24|3, 1|24|35, 15|2|34, 1|25|34. a(9) = 280: 123|456|789, 123|457|689, 123|458|679, 123|459|678, ..., 169|278|345, 178|269|345, 179|268|345, 189|267|345.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..607
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(`if`(j=0 or j=i, b(n-i*j, i-1)/j!* combinat[multinomial](n, i$j, n-i*j), 0), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..35);