A374332 a(n) is the numerator of x(n) = (2*x(n-1) + 1/n) mod 1, with x(0) = 0.
0, 0, 1, 1, 11, 1, 7, 64, 289, 1007, 44, 338, 163, 3505, 8297, 44488, 27221, 823117, 993287, 20403983, 26327699, 27713369, 27650353, 315868349, 2488325579, 6016553239, 1399433807, 3562923992, 9142117861, 275160597119, 268889538733, 3968532770473, 114095155444597
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..2000
- David H. Bailey and Jonathan M. Borwein, Experimental Mathematics: Examples, Methods and Implications, Notices of the American Mathematical Society, May 2005, Vol. 52, No. 5, pp. 502-514.
- David H. Bailey and Richard E. Crandall, On the Random Character of Fundamental Constant Expansions, Experimental Mathematics, Vol. 10 (2001), Issue 2, pp. 175-190 (preprint draft).
- David H. Bailey and Richard E. Crandall, Random Generators and Normal Numbers, Experimental Mathematics, Vol. 11 (2002), Issue 4, pp. 527-546 (preprint draft).
Programs
-
Mathematica
Block[{n = 0}, Numerator[NestList[Mod[2*# + 1/++n, 1] &, 0, 50]]]
-
PARI
x(n) = if (n==0, 0, 2*x(n-1) + 1/n); a(n) = numerator(frac(x(n))); \\ Michel Marcus, Jul 13 2024
-
Python
from fractions import Fraction from itertools import count, islice def A374332_gen(): # generator of terms a = Fraction(0,1) for n in count(1): yield a.numerator a = (2*a+Fraction(1,n)) % 1 A374332_list = list(islice(A374332_gen(),20)) # Chai Wah Wu, Jul 13 2024
Comments