A374348 a(n) = k where wt(k) = n and k + wt(k) = a power of two, where wt(n) = A000120(n) = binary weight of n.
1, 6, 13, 60, 59, 250, 505, 2040, 1015, 4086, 8181, 32756, 32755, 131058, 262129, 1048560, 262127, 1048558, 2097133, 8388588, 8388587, 33554410, 67108841, 268435432, 134217703, 536870886, 1073741797, 4294967268, 4294967267, 17179869154, 34359738337, 137438953440
Offset: 1
Examples
For n = 4, 60 in binary is 111100, which has sum of digits of 4, and 60 + 4 = 64, a power of two. For n = 5, 59 in binary is 111011, which has sum of digits of 5, and 59 + 5 = 64.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
a:= n-> 2^(n+add(i, i=Bits[Split](n-1)))-n: seq(a(n), n=1..32); # Alois P. Heinz, Jul 05 2024
-
Python
def a(n): return (1 << (n + (n-1).bit_count())) - n
Comments