A374369 Triangle T(n, k), n > 0, k = 0..n-1, read by rows; T(n, k) is the least m such that n and k differ modulo m.
2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 3, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2
Offset: 1
Examples
Triangle T(n, k) begins: n n-th row -- ---------------------------------- 1 2 2 3, 2 3 2, 3, 2 4 3, 2, 3, 2 5 2, 3, 2, 3, 2 6 4, 2, 3, 2, 3, 2 7 2, 4, 2, 3, 2, 3, 2 8 3, 2, 4, 2, 3, 2, 3, 2 9 2, 3, 2, 4, 2, 3, 2, 3, 2 10 3, 2, 3, 2, 4, 2, 3, 2, 3, 2 11 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2 12 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2
Programs
-
Mathematica
T[n_,k_]:=Module[{m=2},While[Mod[n,m]==Mod[k,m], m++]; m]; Table[T[n,k],{n,13},{k,0,n-1}]//Flatten (* Stefano Spezia, Jul 12 2024 *)
-
PARI
T(n, k) = { for (m = 2, oo, if ((n%m) != (k%m), return (m););); }
Formula
T(n, k) = A007978(n-k).