cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374378 Iterated rascal triangle R2: T(n,k) = Sum_{m=0..2} binomial(n-k,m)*binomial(k,m).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 19, 15, 6, 1, 1, 7, 21, 31, 31, 21, 7, 1, 1, 8, 28, 46, 53, 46, 28, 8, 1, 1, 9, 36, 64, 81, 81, 64, 36, 9, 1, 1, 10, 45, 85, 115, 126, 115, 85, 45, 10, 1, 1, 11, 55, 109, 155, 181, 181, 155, 109, 55, 11, 1
Offset: 0

Views

Author

Kolosov Petro, Jul 06 2024

Keywords

Comments

Triangle T(n,k) is the second triangle R2 among the rascal-family triangles; A374452 is triangle R3; A077028 is triangle R1.
Triangle T(n,k) equals Pascal's triangle A007318 through row 2i+1, i=2 (i.e., row 5).
Triangle T(n,k) equals Pascal's triangle A007318 through column i, i=2 (i.e., column 2).

Examples

			Triangle begins:
--------------------------------------------------
k=     0   1   2   3    4    5    6   7   8   9 10
--------------------------------------------------
n=0:   1
n=1:   1   1
n=2:   1   2   1
n=3:   1   3   3   1
n=4:   1   4   6   4    1
n=5:   1   5  10  10    5    1
n=6:   1   6  15  19   15    6    1
n=7:   1   7  21  31   31   21    7   1
n=8:   1   8  28  46   53   46   28   8   1
n=9:   1   9  36  64   81   81   64  36   9   1
n=10:  1  10  45  85  115  126  115  85  45  10  1
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:=Sum[Binomial[n - k, m]*Binomial[k, m], {m, 0, 2}]; Column[Table[t[n, k], {n, 0, 12}, {k, 0, n}], Center]

Formula

T(n,k) = 1 + k*(n-k) + (1/4)*(k-1)*k*(n-k-1)*(n-k).
Row sums give A006261(n).
Diagonal T(n+1, n) gives A000027(n).
Diagonal T(n+2, n) gives A000217(n).
Diagonal T(n+3, n) gives A005448(n).
Diagonal T(n+4, n) gives A056108(n).
Diagonal T(n+5, n) gives A212656(n).
Column k=3 difference binomial(n+6, 3) - T(n+6, 3) gives C(n+3,3)=A007318(n+3,3).
Column k=4 difference binomial(n+7, 4) - T(n+7, 4) gives fifth column of (1,4)-Pascal triangle A095667.
G.f.: (1 + 3*x^4*y^2 - (2*x + 3*x^3*y)*(1 + y) + x^2*(1 + 5*y + y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 09 2024