A374379 a(1) = 1, a(2) = 2. Let i = a(n-2), j = a(n-1), then for n > 2 a(n) is the least novel k such that rad(k) !| rad(i*j) whereas rad(i*j*k) is a primorial number (A002110), where rad is A007947.
1, 2, 3, 5, 4, 6, 10, 7, 9, 20, 14, 12, 15, 21, 8, 25, 18, 28, 30, 11, 35, 24, 22, 70, 27, 33, 140, 13, 66, 105, 26, 44, 210, 39, 55, 42, 52, 110, 63, 65, 88, 84, 40, 77, 36, 45, 49, 16, 60, 56, 99, 50, 91, 132, 75, 98, 121, 90, 112, 143, 120, 119, 286, 135, 126, 154, 80, 48, 147
Offset: 1
Keywords
Examples
a(3) = 3 since rad(3) !| rad(1*2) whereas rad (1*2*3) = 6 = A002110(2). a(5,6) = {4,6}—> a(7) = 10 since rad(10) !| rad(24), rad(4*6*10) = 30 = A002110(3) and there is no smaller novel term with this property. From _Michael De Vlieger_, Jul 06 2024: (Start) Table of a(3..18) showing prime decomposition of rad(i*j) and rad(i*j*k): n a(n) rad(i*j) rad(i*j*k) ------------------------------- 3 3 2 2 3 4 5 2 3 2 3 5 5 4 . 3 5 2 3 5 6 6 2 . 5 2 3 5 7 10 2 3 2 3 5 8 7 2 3 5 2 3 5 7 9 9 2 . 5 7 2 3 5 7 10 20 . 3 . 7 2 3 5 7 11 14 2 3 5 2 3 5 7 12 12 2 . 5 7 2 3 5 7 13 15 2 3 . 7 2 3 5 7 14 21 2 3 5 2 3 5 7 15 8 . 3 5 7 2 3 5 7 16 25 2 3 . 7 2 3 5 7 17 18 2 . 5 2 3 5 18 28 2 3 5 2 3 5 7 (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2050
- Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..2048.
Programs
-
Mathematica
nn = 1200; c[] := False; rad[n] := rad[n] = Times @@ FactorInteger[n][[All, 1]]; Array[Set[{a[#], c[#]}, {#, True}] &, 2]; f[n_] := Or[IntegerQ@ Log2[n], And[EvenQ[n], Union@ Differences@ Map[PrimePi, FactorInteger[n][[All, 1]]] == {1}]]; i = a[1]; j = a[2]; u = 3; Monitor[Do[r = rad[i*j]; k = u; While[Or[c[k], Divisible[#, rad[k]], ! f[# k]] &[i*j], k++]; Set[{a[n], c[k], i, j}, {k, True, j, k}]; If[k == u, While[c[u], u++]], {n, 3, nn}], n]; Array[a, nn] (* Michael De Vlieger, Jul 06 2024 *)
Comments