cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374379 a(1) = 1, a(2) = 2. Let i = a(n-2), j = a(n-1), then for n > 2 a(n) is the least novel k such that rad(k) !| rad(i*j) whereas rad(i*j*k) is a primorial number (A002110), where rad is A007947.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 10, 7, 9, 20, 14, 12, 15, 21, 8, 25, 18, 28, 30, 11, 35, 24, 22, 70, 27, 33, 140, 13, 66, 105, 26, 44, 210, 39, 55, 42, 52, 110, 63, 65, 88, 84, 40, 77, 36, 45, 49, 16, 60, 56, 99, 50, 91, 132, 75, 98, 121, 90, 112, 143, 120, 119, 286, 135, 126, 154, 80, 48, 147
Offset: 1

Views

Author

David James Sycamore, Jul 06 2024

Keywords

Comments

For n > 2 a(n) is prime iff rad(i*j) is a primorial number, for then k is the smallest prime which does not divide rad(i*j).
Initially same terms as A362889, but divergence occurs at a(69) = 147.
Conjectured to be a permutation of the natural numbers with primes in order.

Examples

			a(3) = 3 since rad(3) !| rad(1*2) whereas rad (1*2*3) = 6 = A002110(2).
a(5,6) = {4,6}—> a(7) = 10 since rad(10) !| rad(24), rad(4*6*10) = 30 = A002110(3) and there is no smaller novel term with this property.
From _Michael De Vlieger_, Jul 06 2024: (Start)
Table of a(3..18) showing prime decomposition of rad(i*j) and rad(i*j*k):
   n  a(n)   rad(i*j)   rad(i*j*k)
  -------------------------------
   3    3    2          2 3
   4    5    2 3        2 3 5
   5    4    . 3 5      2 3 5
   6    6    2 . 5      2 3 5
   7   10    2 3        2 3 5
   8    7    2 3 5      2 3 5 7
   9    9    2 . 5 7    2 3 5 7
  10   20    . 3 . 7    2 3 5 7
  11   14    2 3 5      2 3 5 7
  12   12    2 . 5 7    2 3 5 7
  13   15    2 3 . 7    2 3 5 7
  14   21    2 3 5      2 3 5 7
  15    8    . 3 5 7    2 3 5 7
  16   25    2 3 . 7    2 3 5 7
  17   18    2 . 5      2 3 5
  18   28    2 3 5      2 3 5 7   (End)
		

Crossrefs

Programs

  • Mathematica
    nn = 1200; c[] := False; rad[n] := rad[n] = Times @@ FactorInteger[n][[All, 1]];
    Array[Set[{a[#], c[#]}, {#, True}] &, 2];
    f[n_] := Or[IntegerQ@ Log2[n],
      And[EvenQ[n], Union@ Differences@ Map[PrimePi, FactorInteger[n][[All, 1]]] == {1}]]; i = a[1]; j = a[2]; u = 3;
    Monitor[Do[r = rad[i*j]; k = u;
      While[Or[c[k], Divisible[#, rad[k]], ! f[#  k]] &[i*j], k++];
      Set[{a[n], c[k], i, j}, {k, True, j, k}];
      If[k == u, While[c[u], u++]], {n, 3, nn}], n];
    Array[a, nn] (* Michael De Vlieger, Jul 06 2024 *)