A374397 a(n) is the number of 4-step self avoiding walks in the n-dimensional hypercubic lattice that start at the origin.
2, 100, 726, 2696, 7210, 15852, 30590, 53776, 88146, 136820, 203302, 291480, 405626, 550396, 730830, 952352, 1220770, 1542276, 1923446, 2371240, 2893002, 3496460, 4189726, 4981296, 5880050, 6895252, 8036550, 9313976, 10737946, 12319260, 14069102, 15999040, 18121026
Offset: 1
References
- N. Madras and G. Slade, "The Self Avoiding Walk", Birkhäuser, 2013.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A010575.
Programs
-
Mathematica
A374397[n_] := 2*n*(4*n*(n - 1)*(2*n - 1) + 1); Array[A374397, 50] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {2, 100, 726, 2696, 7210}, 50] (* Paolo Xausa, Sep 23 2024 *)
Formula
a(n) = 16*n^4 - 24*n^3 + 8*n^2 + 2*n.
G.f.: 2*x*(1 + 45*x + 123*x^2 + 23*x^3)/(1 - x)^5. - Stefano Spezia, Jul 07 2024
Comments