A374412 Irregular triangle read by rows: Numerators of exponents of j-th root of the polynomial P(n,x) in A374385, and 1 if n is a power of 2, (numerators of exponents of roots in increasing order).
1, 1, 1, 2, 1, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 1, 2, 4, 7, 8, 11, 13, 14, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2
Offset: 1
Examples
The first few polynomial roots are: { {1}, {-1}, {-(-1)^(1/3), (-1)^(2/3)}, {-1}, {-(-1)^(1/5), (-1)^(2/5), -(-1)^(3/5), (-1)^(4/5)}, {(-1)^(1/3), -(-1)^(2/3)}, {-(-1)^(1/7), (-1)^(2/7), -(-1)^(3/7), (-1)^(4/7), -(-1)^(5/7), (-1)^(6/7)}, {-1}, {-(-1)^(1/3), (-1)^(2/3)}, {(-1)^(1/5), -(-1)^(2/5), (-1)^(3/5), -(-1)^(4/5)} } The irregular triangle a(n,j) begins: n\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 1: 1 2: 1 3: 1 2 4: 1 5: 1 2 3 4 6: 1 2 7: 1 2 3 4 5 6 8: 1 9: 1 2 10: 1 2 3 4 11: 1 2 3 4 5 6 7 8 9 10 12: 1 2 13: 1 2 3 4 5 6 7 8 9 10 11 12 14: 1 2 3 4 5 6 15: 1 2 4 7 8 11 13 14 16: 1 17: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18: 1 2 ...
Programs
-
Mathematica
nn = 18; f[n_] := DivisorSum[n, MoebiusMu[#] # &]; roots = Table[(x /. Solve[Denominator[Sum[Sum[f[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}]] == 0, x]), {n, 1, nn}]; Flatten[ReplaceAll[Numerator[Exponent[roots, -1]], 0 -> 1]] (* Conjectured formula: *) nn = 18; A204455[n_] := -(1/2)*(-2 + If[Mod[n, 2] == 0, 1, 0])*Sum[EulerPhi[k]*If[Mod[n, k] == 0, 1, 0]*MoebiusMu[k]^2, {k, 1, n}]; Flatten[Table[DeleteCases[Table[j*If[GCD[A204455[n], j] == 1, 1, 0], {j, 1, A204455[n]}], 0], {n, 1, nn}]]
Comments