cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374412 Irregular triangle read by rows: Numerators of exponents of j-th root of the polynomial P(n,x) in A374385, and 1 if n is a power of 2, (numerators of exponents of roots in increasing order).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 1, 2, 4, 7, 8, 11, 13, 14, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2
Offset: 1

Views

Author

Mats Granvik, Jul 08 2024

Keywords

Comments

Denominators are A204455(n) for row n.
Conjecture 1: The j-th root of the n-th polynomial is:
Root(P(n,x) = 0, j) = -(-1)^(j + n)*(-1)^(j/A204455(n))*[GCD(A204455(n),j) = 1], where 1 <= j <= A204455(n) and where terms equal to 0 are deleted. Conjecture 1 has been verified up to n = 200.

Examples

			The first few polynomial roots are:
{
  {1},
  {-1},
  {-(-1)^(1/3), (-1)^(2/3)},
  {-1},
  {-(-1)^(1/5), (-1)^(2/5), -(-1)^(3/5), (-1)^(4/5)},
  {(-1)^(1/3), -(-1)^(2/3)},
  {-(-1)^(1/7), (-1)^(2/7), -(-1)^(3/7), (-1)^(4/7), -(-1)^(5/7), (-1)^(6/7)},
  {-1},
  {-(-1)^(1/3), (-1)^(2/3)},
  {(-1)^(1/5), -(-1)^(2/5), (-1)^(3/5), -(-1)^(4/5)}
}
The irregular triangle a(n,j) begins:
  n\j 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 ...
  1:  1
  2:  1
  3:  1  2
  4:  1
  5:  1  2  3  4
  6:  1  2
  7:  1  2  3  4  5  6
  8:  1
  9:  1  2
  10: 1  2  3  4
  11: 1  2  3  4  5  6  7  8  9 10
  12: 1  2
  13: 1  2  3  4  5  6  7  8  9 10 11 12
  14: 1  2  3  4  5  6
  15: 1  2  4  7  8 11 13 14
  16: 1
  17: 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16
  18: 1  2
  ...
		

Crossrefs

Cf. A374385 (coefficients), A023900, A173557, A204455.

Programs

  • Mathematica
    nn = 18; f[n_] := DivisorSum[n, MoebiusMu[#] # &]; roots = Table[(x /. Solve[Denominator[Sum[Sum[f[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}]] == 0, x]), {n, 1, nn}]; Flatten[ReplaceAll[Numerator[Exponent[roots, -1]], 0 -> 1]]
    (* Conjectured formula: *)
      nn = 18; A204455[n_] := -(1/2)*(-2 + If[Mod[n, 2] == 0, 1, 0])*Sum[EulerPhi[k]*If[Mod[n, k] == 0, 1, 0]*MoebiusMu[k]^2, {k, 1, n}]; Flatten[Table[DeleteCases[Table[j*If[GCD[A204455[n], j] == 1, 1, 0], {j, 1, A204455[n]}], 0], {n, 1, nn}]]

Formula

P(n,x) = denominator(Sum_{h=0..infinity} Sum_{k=1..n} A023900(GCD(n,k))*x^(n*h + k)).
a(n,j) = numerator of exponent of j-th root of [x^m] P(n,x), n >= 0, 0 <= m <= abs(A023900(n)).
Conjecture 1: a(n,j) = j*[GCD(A204455(n), j) = 1], 1 <= j <= A204455(n), where zeros are deleted. Verified up to n = 200.