A374440 Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.
1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 4, 1, 3, 2, 0, 1, 5, 1, 6, 3, 1, 1, 1, 6, 1, 10, 4, 4, 3, 0, 1, 7, 1, 15, 5, 10, 6, 1, 1, 1, 8, 1, 21, 6, 20, 10, 5, 4, 0, 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1, 1, 10, 1, 36, 8, 56, 21, 35, 20, 6, 5, 0
Offset: 0
Examples
Triangle starts: [ 0] 1; [ 1] 1, 0; [ 2] 1, 1, 1; [ 3] 1, 2, 1, 0; [ 4] 1, 3, 1, 1, 1; [ 5] 1, 4, 1, 3, 2, 0; [ 6] 1, 5, 1, 6, 3, 1, 1; [ 7] 1, 6, 1, 10, 4, 4, 3, 0; [ 8] 1, 7, 1, 15, 5, 10, 6, 1, 1; [ 9] 1, 8, 1, 21, 6, 20, 10, 5, 4, 0; [10] 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1;
Crossrefs
Programs
-
Maple
T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0 elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end: seq(seq(T(n, k), k = 0..n), n = 0..9); T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) - binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))):
Formula
T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling((k + even(k))/2), floor(k/2)) if k > 0, T(n, 0) = 1, where even(k) = 1 if k is even, otherwise 0.
Columns with odd index agree with the odd indexed columns of A374441.
Comments