cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374440 Triangle read by rows: T(n, k) = T(n - 1, k) + T(n - 2, k - 2), with boundary conditions: if k = 0 or k = 2 then T = 1; if k = 1 then T = n - 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 1, 1, 1, 4, 1, 3, 2, 0, 1, 5, 1, 6, 3, 1, 1, 1, 6, 1, 10, 4, 4, 3, 0, 1, 7, 1, 15, 5, 10, 6, 1, 1, 1, 8, 1, 21, 6, 20, 10, 5, 4, 0, 1, 9, 1, 28, 7, 35, 15, 15, 10, 1, 1, 1, 10, 1, 36, 8, 56, 21, 35, 20, 6, 5, 0
Offset: 0

Views

Author

Peter Luschny, Jul 21 2024

Keywords

Comments

Member of the family of Lucas-Fibonacci polynomials.

Examples

			Triangle starts:
  [ 0]  1;
  [ 1]  1,  0;
  [ 2]  1,  1,  1;
  [ 3]  1,  2,  1,  0;
  [ 4]  1,  3,  1,  1,  1;
  [ 5]  1,  4,  1,  3,  2,  0;
  [ 6]  1,  5,  1,  6,  3,  1,  1;
  [ 7]  1,  6,  1, 10,  4,  4,  3,  0;
  [ 8]  1,  7,  1, 15,  5, 10,  6,  1,  1;
  [ 9]  1,  8,  1, 21,  6, 20, 10,  5,  4,  0;
  [10]  1,  9,  1, 28,  7, 35, 15, 15, 10,  1, 1;
		

Crossrefs

Cf. A374441.
Cf. A000032 (Lucas), A001611 (even sums, Fibonacci + 1), A000071 (odd sums, Fibonacci - 1), A001911 (alternating sums, Fibonacci(n+3) - 2), A025560 (row lcm), A073028 (row max), A117671 & A025174 (central terms), A057979 (subdiagonal), A000217 (column 3).

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 or k = 2 then 1 elif k > n then 0
    elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..9);
    T := (n, k) -> ifelse(k = 0, 1, binomial(n - floor(k/2), ceil(k/2)) -
    binomial(n - ceil((k + irem(k + 1, 2))/2), floor(k/2))):

Formula

T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling((k + even(k))/2), floor(k/2)) if k > 0, T(n, 0) = 1, where even(k) = 1 if k is even, otherwise 0.
Columns with odd index agree with the odd indexed columns of A374441.