A374443 Triangle read by rows: T(n, k) = rad(gcd(n, k)) if n, k > 0, T(0, 0) = 1, where rad = A007947 and gcd = A109004.
1, 1, 1, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 2, 5, 1, 1, 1, 1, 5, 6, 1, 2, 3, 2, 1, 6, 7, 1, 1, 1, 1, 1, 1, 7, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6
Offset: 0
Examples
Triangle starts: [ 0] 1; [ 1] 1, 1; [ 2] 2, 1, 2; [ 3] 3, 1, 1, 3; [ 4] 2, 1, 2, 1, 2; [ 5] 5, 1, 1, 1, 1, 5; [ 6] 6, 1, 2, 3, 2, 1, 6; [ 7] 7, 1, 1, 1, 1, 1, 1, 7; [ 8] 2, 1, 2, 1, 2, 1, 2, 1, 2; [ 9] 3, 1, 1, 3, 1, 1, 3, 1, 1, 3; [10] 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10; [11] 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11;
Programs
-
Maple
rad := n -> ifelse(n = 0, 1, NumberTheory:-Radical(n)): T := (n, k) -> rad(igcd(n, k)); seq(seq(T(n, k), k = 0..n), n = 0..11);
-
Mathematica
rad[n_] := If[n == 0, 1, Product[p, {p, Select[Divisors[n], PrimeQ]}]]; T[n_, k_] := rad[GCD[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten
-
Python
from math import gcd, prod from sympy.ntheory import primefactors def T(n, k) -> int: return prod(primefactors(gcd(n, k))) for n in range(16): print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jun 22 2025