A374447 Inverse permutation to A373498.
2, 1, 3, 9, 4, 7, 6, 8, 5, 10, 20, 11, 18, 13, 16, 15, 17, 12, 19, 14, 21, 35, 22, 33, 24, 31, 26, 29, 28, 30, 23, 32, 25, 34, 27, 36, 54, 37, 52, 39, 50, 41, 48, 43, 46, 45, 47, 38, 49, 40, 51, 42, 53, 44, 55
Offset: 1
Examples
Triangle begins: k = 1 2 3 4 5 6 7 8 9 10 11 n=1: 2, 1, 3; n=2: 9, 4, 7, 6, 8, 5, 10; n=3: 20, 11, 18, 13, 16, 15, 17, 12, 19, 14, 21; The triangle's rows can be arranged as two successive upward antidiagonals in an array: 2, 3, 7, 10, 16, 21, ... 1, 4, 5, 13, 14, 26, ... 9, 8, 18, 19, 31, 34, ... 6, 11, 12, 24, 25, 41, ... 20, 17, 33, 32, 50, 51, ... 15, 22, 23, 39, 40. 60, ... Subtracting (n-1)*(2*n-1) from each term in row n is a permutation of 1 .. 4*n-1: 2,1,3, 6,1,4,3,5,2,7, 10,1,8,3,6,5,7,2,9,4,11 ... The inverse permutation of each permutation in example A373498 is equal to the corresponding permutation above: (2,1,3)^(-1) = (2,1,3), (2,6,4,3,5,1,7)^(-1) = (6,1,4,3,5,2,7), (2,8,4,10,6,5,7,3,9,1,11)^(-1) = (10,1,8,3,6,5,7,2,9,4,11). The 5th power of each permutation in example A373498 is equal to the corresponding permutation above: (2,1,3)^5 = (2,1,3), (2,6,4,3,5,1,7)^5 = (6,1,4,3,5,2,7), (2,8,4,10,6,5,7,3,9,1,11)^5 = (10,1,8,3,6,5,7,2,9,4,11).
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..9870
- Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Mathematica
Nmax=21; a[n_]:=Module[{L,R,P,Result},L=Ceiling[(Sqrt[8*n+1]-1)/4]; R=n-(L-1)*(2*L-1); P=Which[R<=2*L&&Mod[R,2]==1,4*L-R-1,R<=2*L&&Mod[R,2]==0,R-1,R>2*L&&Mod[R,2]==1,R,R>2*L&&Mod[R,2]==0,-2*L+R]; Result=P+(L-1)*(2*L-1); Result] Table[a[n],{n,1,Nmax}] Nmax=21; a[n_]:=Module[{L,R,P,Result},L=Ceiling[(Sqrt[8*n+1]-1)/4]; R=n-(L-1)*(2*L-1); P=Which[R<=2*L-1&&Mod[R,2]==1,R+1,R<=2*L-1&&Mod[R,2]==0,R+2*L,R>2*L-1&&Mod[R,2]==1,R,R>2*L-1&&Mod[R,2]==0,4*L-1-R]; Result=P+(L-1)*(2*L-1); Result] Table[a[n],{n,1,Nmax}] (* A373498 *) Table[a[a[a[a[a[n]]]]],{n,1,Nmax}] (* this sequence *)
Formula
Linear sequence:
a(n) = P(n) + (L(n)-1)*(2*L(n)-1), where L(n) = ceiling((sqrt(8*n+1)-1)/4),
L(n) = A204164(n), P(n) = 4*L(n) - R(n) - 1, if R(n) <= 2*L(n) and R(n) mod 2 = 1, P(n) = R(n) - 1, if R(n) <= 2*L(n) and R(n) mod 2 = 0, P(n) = R(n), if R(n) > 2*L(n) and R(n) mod 2 = 1, P(n) = - 2*L(n) + R(n), if R(n) > 2*L(n) and R(n) mod 2 = 0.
Triangular array T(n,k) for 1 <= k <= 4*n-1 (see Example):
T(n,k) = (n-1)*(2*n-1) + P(n,k), where P(n,k) = 4*n - k - 1, if k <= 2*n and k mod 2 = 1, P(n,k) = k-1, if k <= 2*n and k mod 2 = 0, P(n,k) = k, if k > 2*n and k mod 2 = 1, P(n,k) = -2*n + k, if k > 2*n and k mod 2 = 0.
Comments