A370655 Triangle read by rows where row n is a block of length 4*n-1 which is a permutation of the numbers of its constituents.
2, 1, 3, 4, 5, 7, 6, 8, 9, 10, 13, 14, 11, 12, 16, 15, 17, 20, 19, 18, 21, 26, 27, 24, 25, 22, 23, 29, 28, 30, 35, 32, 33, 34, 31, 36, 43, 44, 41, 42, 39, 40, 37, 38, 46, 45, 47, 54, 49, 52, 51, 50, 53, 48, 55
Offset: 1
Examples
Triangle begins: k = 1 2 3 4 5 6 7 8 9 10 11 n=1: 2, 1, 3; n=2: 4, 5, 7, 6, 8, 9, 10; n=3: 13, 14, 11, 12, 16, 15, 17, 20, 19, 18, 21; Subtracting (n-1)*(2*n-1) from each term is row n is a self-inverse permutation of 1 .. 4*n-1, 2,1,3, 1,2,4,3,5,6,7, 3,4,1,2,6,5,7,10,9,8,11, ... The triangle rows can be arranged as two successive upward antidiagonals in an array: 2, 3, 7, 10, 16, 21, ... 1, 5, 9, 12, 18, 23, ... 4, 8, 11, 19, 22, 34, ... 6, 14, 20, 25, 33, 40, ... 13, 17, 24, 32, 39, 51, ... 15, 27, 35, 42, 52, 61, ...
Links
- Boris Putievskiy, Table of n, a(n) for n = 1..9870
- Boris Putievskiy, Integer Sequences: Irregular Arrays and Intra-Block Permutations, arXiv:2310.18466 [math.CO], 2023.
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Mathematica
Nmax = 21; a[n_] := Module[{L, R, P, Result}, L = Ceiling[(Sqrt[8*n + 1] - 1)/4]; R = n - (L - 1)*(2*L - 1); P = If[R < 2*L - 1, If[Mod[R, 2] == 1, -R + 2*L - 2, -R + 2*L], If[R == 2*L - 1, 2*L, If[R == 2*L, R - 1, If[Mod[R, 2] == 1, R, 6*L - R]]]]; Result = P + (L - 1)*(2*L - 1); Result] Table[a[n], {n, 1, Nmax}]
Formula
Linear sequence:
a(n) = P(n) + (L(n)-1)*(2*L(n)-1), where L(n) = ceiling((sqrt(8*n+1)-1)/4),
L(n) = A204164(n),
R(n) = n - (L(n)-1)*(2*L(n)-1),
P(n) = -R(n) + 2*L(n)-2, if R(n) < 2*L(n) - 1 and R(n) mod 2 = 1, P(n) = -R(n) + 2*L(n), if R(n) < 2*L(n) - 1 and R(n) mod 2 = 0, P(n) = 2*L(n), if R(n) = 2*L(n) - 1, P(n) = R(n)-1, if R(n) = 2*L(n), P(n) = R(n), if R(n) > 2*L(n) and R(n) mod 2 = 1, P(n) = 6*L(n) - R(n), if R(n) > 2*L(n) and R(n) mod 2 = 0.
Triangular array T(n,k) for 1 <= k <= 4*n-1 (see Example):
T(n,k) = (n-1)*(2*n-1) + P(n,k), where
P(n,k) = 2*n-k-2 if k < 2*n-1 and k mod 2 = 1,
2*n-k if k < 2*n-1 and k mod 2 = 0,
2*k if k = 2*n-1,
k-1 if k = 2*n,
k if k > 2*n and k mod 2 = 1,
6*n-k if k > 2*n and k mod 2 = 0.
Comments