A374449 Triangle read by rows: T(m,k) is the first number that starts a sequence of exactly k consecutive numbers with m prime factors, counted with multiplicity, if such a sequence is possible.
5, 2, 4, 9, 33, 8, 27, 170, 1083, 602, 2522, 211673, 16, 135, 1274, 4023, 12122, 204323, 355923, 6612470, 3405122, 49799889, 202536181, 3195380868, 5208143601
Offset: 1
Examples
Triangle starts 5 2 4 9 33 8 27 170 1083 603 3533 211673 T(3,2) = 27 because 27 = 3^3 and 28 = 2^2 * 7 each have 3 prime factors (counted with multiplicity) while 26 = 2*13 and 29 (prime) do not.
Crossrefs
Programs
-
Maple
f:= proc(n) uses priqueue; local V,L, count, T, v, j, q, p, TP; V:= Vector(2^n-1); count:= 0; L:= [(-1)$(2^n),2^n]; initialize(pq); insert([-2^(n),2$n],pq); while count < 2^n-1 do T:= extract(pq); v:= -T[1]; if L[-1] <> v-1 then for j from 1 while L[-1]-L[-j] = j-1 do if L[-j]-L[-j-1] <> 1 and V[j] = 0 then V[j]:= L[-j]; count:= count+1; fi od fi; L:= [op(L[2..-1]),v]; q:= T[-1]; p:= nextprime(q); for j from n+1 to 2 by -1 do if T[j] <> q then break fi; TP:= [T[1]*(p/q)^(n+2-j), op(T[2..j-1]), p$(n+2-j)]; insert(TP,pq); od od; op(convert(V,list)); end proc: f(1):= 5,2: seq(f(i),i=1..3);
Formula
T(m,1) = 2^m for m >= 2.
Comments