cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374542 Number of length n inversion sequences avoiding the patterns 102 and 210.

Original entry on oeis.org

1, 1, 2, 6, 22, 87, 351, 1416, 5681, 22660, 89961, 355924, 1404839, 5536143, 21794634, 85749490, 337271186, 1326421512, 5216761708, 20520185594, 80733298320, 317713643536, 1250674963766, 4924782835110, 19398524629494, 76434881013402, 301270165265954
Offset: 0

Views

Author

Benjamin Testart, Jul 12 2024

Keywords

Crossrefs

Cf. A279555.

Formula

G.f: ((4*x - 1) * (4*x^4 - 22*x^3 + 25*x^2 - 9*x + 1) - (2*x - 1) * (x^2 - 5*x + 1) * (2*x^2 - 4*x + 1) * (1-4*x)^(1/2)) / (2*x^3 * (4*x - 1) * (x - 1)^2).
D-finite with recurrence -(n+3)*(1514*n-13441)*a(n) +(16281*n^2-104929*n-159699)*a(n-1) +(-54702*n^2+377288*n-136533)*a(n-2) +(60299*n^2-430394*n+520290)*a(n-3) -6*(2*n-7)*(1697*n-7015)*a(n-4) +30*(-702*n+3361)=0. - R. J. Mathar, Jul 12 2024
a(n) ~ 2^(2*n+1)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 21 2024