cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374547 Number of length n inversion sequences avoiding the patterns 101 and 210.

Original entry on oeis.org

1, 1, 2, 6, 23, 103, 513, 2763, 15816, 95109, 595873, 3865396, 25837360, 177275162, 1244621410, 8918587896, 65085848546, 482852672433, 3635811839722, 27749901618649, 214430320809516, 1675833302839457, 13234389150662469, 105525920568921495, 848962775349348810
Offset: 0

Views

Author

Benjamin Testart, Jul 13 2024

Keywords

Crossrefs

A374553 Number of length n inversion sequences avoiding the patterns 010 and 102.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 186, 707, 2763, 11024, 44714, 183830, 764374, 3209031, 13584217, 57918257, 248502212, 1072159593, 4648747281, 20245772943, 88524364619, 388469248937, 1710304847176, 7552480937589, 33442335151831, 148456424569164, 660560252794208
Offset: 0

Views

Author

Benjamin Testart, Jul 17 2024

Keywords

Crossrefs

Formula

G.f. F(x) is algebraic with minimal polynomial x * (x^2 - x + 1)*(x - 1)^2 * F(x)^3 + 2*x*(x - 1)*(2*x^2 - 2*x + 1)*F(x)^2 - (x^4 - 8*x^3 + 11*x^2 - 6*x + 1)*F(x) - (2*x - 1)*(x - 1)^2.

A374554 Number of length n inversion sequences avoiding the patterns 100 and 102.

Original entry on oeis.org

1, 1, 2, 6, 21, 80, 318, 1305, 5487, 23535, 102603, 453400, 2026408, 9144361, 41607161, 190675552, 879318056, 4077566276, 19001732690, 88940105945, 417948841012, 1971086634986, 9326180071850, 44258248464408, 210605264950063, 1004694354945863, 4804017049287049
Offset: 0

Views

Author

Benjamin Testart, Jul 17 2024

Keywords

Crossrefs

Showing 1-3 of 3 results.