A374562 Defined by: Sum_{i=1..n} a(i) / n^i = 1, n >= 1.
1, 2, 12, 112, 1390, 21324, 387674, 8126000, 192616470, 5089321300, 148225991386, 4716320842248, 162745503111542, 6053000082586940, 241386577491939450, 10274734610562571360, 464969951693639429398, 22292508702711459409956, 1128813253960656111451418, 60200897135221442194205240
Offset: 1
Keywords
Examples
a(1) = 1^1 = 1. a(2) = 2^2 - 2^1*a(1) = 2. a(3) = 3^3 - 3^2*a(1) - 3^1*a(2) = 12. a(1) = + 1^1 ( 0---1 ) = 1. a(2) = + 2^2 ( 0-------2 ) - 2^1 * 1^1 ( 0---1---2 ) = 2. a(3) = + 3^3 ( 0-----------3 ) - 3^2 * 1^1 ( 0---1-------3 ) - 3^1 * 2^2 ( 0-------2---3 ) + 3^1 * 2^1 * 1^1 ( 0---1---2---3 ) = 12.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..386
Crossrefs
Cf. A374601.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<1, 0, n^n-add(n^(n-i)*a(i), i=1..n-1)) end: seq(a(n), n=1..20); # Alois P. Heinz, Jul 13 2024
-
Mathematica
a[n_] := a[n] = n^n - Sum[n^(n - i)*a[i], {i, 1, n - 1}] a /@ Range[20]
-
PARI
a(n)=n^n-sum(i=1,n-1,n^(n-i)*a(i))
Formula
a(n) = n^n - Sum_{i=1..n-1} n^(n-i)*a(i).
a(n) = -Sum_{c composition of n} ((-1)^(#c) * Product_{k=1..#c} (n - (Sum_{i
a(n) = n * A374601(n).
Comments