cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374565 Expansion of g.f. A(x) satisfying A(x)^3 = A( x*A(x)^2/(1-x) ).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 24, 57, 141, 350, 881, 2267, 5920, 15601, 41497, 111399, 301293, 819843, 2243058, 6167211, 17029473, 47200752, 131270283, 366195789, 1024380648, 2872770381, 8074967031, 22745832254, 64196912681, 181516532273, 514107418321, 1458407886019, 4143318012685
Offset: 1

Views

Author

Paul D. Hanna, Jul 23 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 2*x^4 + 5*x^5 + 11*x^6 + 24*x^7 + 57*x^8 + 141*x^9 + 350*x^10 + 881*x^11 + 2267*x^12 + 5920*x^13 + 15601*x^14 + 41497*x^15 + ...
where A(x)^3 = A( x*A(x)^2/(1-x) )
and A(x) = x + x*(A(x) + A(x)^3 + A(x)^9 + A(x)^27 + ... A(x)^(3^n) + ...).
RELATED SERIES.
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 33*x^7 + 84*x^8 + 208*x^9 + 522*x^10 + 1341*x^11 + 3479*x^12 + 9078*x^13 + 23907*x^14 + 63560*x^15 + ...
Let B(x) be the series reversion of A(x), B(A(x)) = x, then
B(x) = x - x^2 + x^3 - 2*x^4 + 3*x^5 - 4*x^6 + 6*x^7 - 9*x^8 + 13*x^9 - 20*x^10 + ... + (-1)^(n-1)*A078932(n-1)*x^n + ...
where x/B(x) = 1 + x + x^3 + x^9 + x^27 + x^81 + ... + x^(3^n) + ...
F(x) = A(x/(1+x)) = x + x^4 + 3*x^7 + 13*x^10 + 67*x^13 + 378*x^16 + 2253*x^19 + 13947*x^22 + 88803*x^25 + 577903*x^28 + 3826870*x^31 + 25703868*x^34 + ...
where F(x)^3 = F( x*F(x)^2/(1 - x*F(x)^2) )
and F(x) = x + x*(F(x)^3 + F(x)^9 + F(x)^27 + ... + F(x)^(3^n) + ...).
SPECIFIC VALUES.
A(t) = 2/3 at t = 0.3351780091733165997365854281871805851976265481916...
where 8/27 = A( (4/9)*t/(1-t) )
and t = (2/3)/(1 + Sum_{n>=0} (2/3)^(3^n)).
A(t) = 1/2 at t = 0.3073229277642929985518391822746766756418592443672...
where 1/8 = A( (1/4)*t/(1-t) )
and t = (1/2)/(1 + Sum_{n>=0} (1/2)^(3^n)).
A(1/3) = 0.640317989282342396539425948311398871030928082061168...
where A(1/3)^3 = A( A(1/3)^2/2 ).
A(1/4) = 0.347324237093006237340030053166266719890703533474663...
where A(1/4)^3 = A( A(1/4)^2/3 ).
A(1/5) = 0.254102848699628177600720471035831153854183353627930...
where A(1/5)^3 = A( A(1/5)^2/4 ).
A(1/10) = 0.111264157881789221767410282888976753122883279205707...
where A(1/10)^3 = A( A(1/10)^2/9 ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = serreverse(x/(1 + sum(n=0,ceil(log(n+1)/log(3)), x^(3^n)) + x^3*O(x^n)) )); polcoeff(A,n)}
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=[1], Ax);
    for(i=1, n, A=concat(A, 0); Ax=x*Ser(A);
    A[#A] = -polcoeff( Ax^3 - subst(Ax, x, Ax^2*x/(1-x) ), #A+2) ); A[n]}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = x + x*Sum_{n>=0} A(x)^(3^n).
(2) A(x) = Series_Reversion( x/(1 + Sum_{n>=0} x^(3^n)) ).
(3) A(x)^3 = A( x*A(x)^2/(1-x) ).
(4) A(x)^9 = A( x*A(x)^8/(1 - x - x*A(x)^2) ).
(5) A(x)^27 = A( x*A(x)^26/(1 - x - x*A(x)^2 - x*A(x)^8) ).
(6) A(x)^(3^n) = A( x*A(x)^(3^n-1) / (1 - x*Sum_{k=0..n-1} A(x)^(3^k-1)) ) for n >= 1.
The radius of convergence r and A(r) satisfy r = 1/(Sum_{n>=0} 3^n*A(r)^(3^n-1)) and A(r) = A( A(r)^2*r/(1-r) )^(1/3), where r = 0.3359879296886914478616860912190963818298151003686099... and A(r) = 0.6985186992950193189255500784091315877737446624401085...