cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374566 Expansion of g.f. A(x) satisfying A(x)^2 = A( x^2 + 2*(1+x)*A(x)^3 ).

Original entry on oeis.org

1, 1, 4, 16, 76, 381, 2010, 10955, 61265, 349472, 2025632, 11896039, 70632739, 423300099, 2557174039, 15555534859, 95202925651, 585799778042, 3621806301246, 22488577587970, 140176525844646, 876813040040057, 5501997007343589, 34625517090342459, 218489435424317825, 1382072993052136903
Offset: 1

Views

Author

Paul D. Hanna, Aug 12 2024

Keywords

Comments

Compare to: C(x)^2 = C( x^2 - 2*C(x)^3 ), where C(x) = x - C(x)^2.

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 16*x^4 + 76*x^5 + 381*x^6 + 2010*x^7 + 10955*x^8 + 61265*x^9 + 349472*x^10 + ...
where A(x)^2 = A( x^2 + 2*(1+x)*A(x)^3 ).
RELATED SERIES.
Let G(x) be the g.f. of the Wedderburn-Etherington numbers, then
A( x - x^3 - x*G(x) ) = x, where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) begins
G(x) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + 207*x^11 + 451*x^12 + 983*x^13 + ... + A001190(n)*x^n + ...
A(x)^2 = x^2 + 2*x^3 + 9*x^4 + 40*x^5 + 200*x^6 + 1042*x^7 + 5646*x^8 + 31410*x^9 + 178488*x^10 + 1031346*x^11 + 6041569*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 15*x^5 + 73*x^6 + 384*x^7 + 2079*x^8 + 11584*x^9 + 65868*x^10 + 380859*x^11 + 2232199*x^12 + 13231686*x^13 + ...
x^2 + 2*(1+x)*A(x)^3 = x^2 + 2*x^3 + 8*x^4 + 36*x^5 + 176*x^6 + 914*x^7 + 4926*x^8 + 27326*x^9 + 154904*x^10 + 893454*x^11 + ...
SPECIFIC VALUES.
A(t) = 1/4 at t = 0.14894182268166520428651100246692394784806895864208130...
where 1/16 = A( t^2 + (1 + t)/32 ).
A(t) = 1/5 at t = 0.14144303881517477480553509807420585604076735607834555...
where 1/25 = A( t^2 + 2*(1 + t)/125 ).
A(1/7) = 0.204913420188897006601259679664181034021504614738141...
where A(1/7)^2 = A( 1/7^2 + (16/7)*A(1/7)^3 ).
A(1/8) = 0.159462997675623738517233384699423553894402512640906...
where A(1/8)^2 = A( 1/8^2 + (18/8)*A(1/8)^3 ).
A(1/9) = 0.134511672187656270338825814076702307725993232871545...
where A(1/9)^2 = A( 1/9^2 + (20/9)*A(1/9)^3 ).
A(1/10) = 0.117197825788422212715965141990212003609448403429416...
where A(1/10)^2 = A( 1/10^2 + (22/10)*A(1/10)^3 ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0,1],Ax=x); for(i=1,n, A = concat(A,0); Ax=Ser(A);
    A[#A] = (1/2)*polcoeff( subst(Ax,x, x^2 + 2*(1+x)*Ax^3) - Ax^2,#A) );A[n+1]}
    for(n=1,30, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x^2 + 2*(1+x)*A(x)^3 ).
(2) x = A( x - x^3 - x*G(x) ), where G(x) = x + (1/2)*(G(x)^2 + G(x^2)) is the g.f. of A001190, the Wedderburn-Etherington numbers.
(3) x^2 = A( x^2*(1 - G(x))^2 + 2*x^3 - x^6 ), where G(x) is the g.f. of A001190.
(4) x = A( x*sqrt(1 - 2*x - G(x^2)) - x^3 ), where G(x) is the g.f. of A001190.