cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A374570 Expansion of g.f. A(x) satisfying A(x)^2 = A( A(x)*C(x) ), where C(x) = x + C(x)^2 is the Catalan function (A000108).

Original entry on oeis.org

1, 1, 3, 8, 27, 90, 320, 1152, 4257, 15934, 60486, 231894, 897242, 3497638, 13725678, 54174286, 214923493, 856560918, 3427838222, 13768875142, 55494305328, 224359469870, 909656736876, 3697874061870, 15068978724200, 61545704828266, 251899370771284, 1033027441769384
Offset: 1

Views

Author

Paul D. Hanna, Jul 11 2024

Keywords

Comments

Conjecture: for n > 1, a(n) is odd iff n = 2^k + 1 for k >= 0.

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 8*x^4 + 27*x^5 + 90*x^6 + 320*x^7 + 1152*x^8 + 4257*x^9 + 15934*x^10 + 60486*x^11 + 231894*x^12 + ...
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 7*x^4 + 22*x^5 + 79*x^6 + 282*x^7 + 1046*x^8 + 3916*x^9 + 14907*x^10 + 57274*x^11 + 222194*x^12 + ...
where A(x)^2 = A( A(x)*C(x) ).
A(x)*C(x) = x^2 + 2*x^3 + 6*x^4 + 18*x^5 + 60*x^6 + 204*x^7 + 720*x^8 + 2586*x^9 + 9468*x^10 + 35124*x^11 + 131898*x^12 + ...
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + ... + A000108(n)*x^n + ,,,
where C(x) = (1 - sqrt(1 - 4*x))/2 is the Catalan function.
Let B(x) satisfy A(x*B(x)) = x, then
B(x) = 1 - x - x^2 + 2*x^3 - x^4 + x^5 + 2*x^6 - 6*x^7 - x^8 + 5*x^9 + x^10 + 2*x^12 - 8*x^13 - 6*x^14 + 22*x^15 - x^16 + ... + A374571(n)*x^n + ...
where C(x*B(x)) = x*B(x^2) and C(x) = x + C(x)^2.
Also notice that A(x-x^2) is the odd function starting as
A(x-x^2) = x + x^3 + 4*x^5 + 18*x^7 + 96*x^9 + 546*x^11 + 3274*x^13 + 20326*x^15 + 129622*x^17+ 843854*x^19 + ...
satisfying A(x-x^2)^2 = A( x*A(x-x^2) ).
SPECIFIC VALUES.
G.f. A(x) diverges at x = 1/4; what is the radius of convergence?
A(2/9) = 0.410501753930478190014767562028185186269192589705662553072...
where A(2/9)^2 = A( (1/3) * A(2/9) ).
A(1/5) = 0.307823207567908585715446000098072863270477544252476707540...
where A(1/5)^2 = A( A(1/5) * (1 - sqrt(1/5))/2 ).
A(1/6) = 0.222895676073964945442191376315546188067098171316653068516...
where A(1/6)^2 = A( A(1/6) * (1 - sqrt(1/3))/2 ).
A(1/8) = 0.149886223456626114071674919752683973970671151550604884301...
where A(1/8)^2 = A( A(1/8) * (1 - sqrt(1/2))/2 ).
A(1/10) = 0.11421035457722945538609562679806658343632346343476019471...
where A(1/10)^2 = A( A(1/10) * (1 - sqrt(3/5))/2 ).
A(1/12) = 0.09255115114959352826965125804331807348315032543228258146...
where A(1/12)^2 = A( A(1/12) * (1 - sqrt(2/3))/2 ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], Ax, C = serreverse(x-x^2 + x^2*O(x^n)));
    for(i=1, n, A=concat(A, 0); Ax=x*Ser(A);
    A[#A] = -polcoeff( Ax^2 - subst(Ax, x, Ax*C ), #A+1) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n, where B(x) = (1/x)*Series_Reversion(A(x)) is the g.f. of A374571 and C(x) = x + C(x)^2 is the g.f. of A000108, satisfies the following formulas.
(1) A(x)^2 = A( A(x)*C(x) ).
(2) x^2 = A( x*C(x*B(x)) ).
(3) A(x) = x / B(A(x)).
(4) A(x) = C(x) / B(A(x)^2).
(5) C(x*B(x)) = x*B(x^2).
(6) A(x-x^2)^2 = A( x*A(x-x^2) ).
Showing 1-1 of 1 results.