cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374572 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*(1+x)*A(x) ).

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 27, 69, 183, 481, 1283, 3453, 9361, 25651, 70927, 197721, 555039, 1567345, 4449023, 12686465, 36323203, 104381397, 300958959, 870378337, 2524129349, 7338679127, 21386456807, 62459196233, 182776933033, 535861013939, 1573742036447, 4629306941913
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 5*x^5 + 11*x^6 + 27*x^7 + 69*x^8 + 183*x^9 + 481*x^10 + 1283*x^11 + 3453*x^12 + 9361*x^13 + 25651*x^14 + 70927*x^15 + ...
where A(x)^2 = A( x*(1+x)*A(x) ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 8*x^5 + 17*x^6 + 38*x^7 + 95*x^8 + 244*x^9 + 649*x^10 + 1738*x^11 + 4699*x^12 + ...
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) = x - x^2 + x^3 - 3*x^4 + 9*x^5 - 25*x^6 + 71*x^7 - 219*x^8 + 693*x^9 - 2197*x^10 + 7069*x^11 - 23135*x^12 + ...
where B(x^2) = x*B(x)*(1 + B(x)).
SPECIFIC VALUES.
A(t) = 1/2 at t = 0.301949314609828865985839329094529550482897401344979...
where 1/4 = A( t*(1 + t)/2 ).
A(3/10) = 0.492388112365452715229250795508017422919418907801551...
where A(3/10)^2 = A( (39/100)*A(3/10) ).
A(2/7) = 0.443877424659041232765055763766392304444609934055603...
where A(2/7)^2 = A( (18/49)*A(2/7) ).
A(1/4) = 0.352241294433584221893793757577235288109595399125986...
where A(1/4)^2 = A( (5/16)*A(1/4) ).
A(1/5) = 0.255826785620580342641277164817159026900345909888978...
where A(1/5)^2 = A( (6/25)*A(1/5) ).
		

Crossrefs

Cf. A075864.

Programs

  • PARI
    {a(n) = my(A=[0,1], Ax); for(i=1,n, A = concat(A,0); Ax = Ser(A);
    A[#A] = polcoeff( subst(Ax,x, x*(1+x)*Ax ) - Ax^2, #A) );A[n+1]}
    for(n=1,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*(1+x)*A(x) ).
(2) A(x)^4 = A( x*(1+x)*A(x)^3 + x^2*(1+x)^2*A(x)^4 ).
(3) A(x)^8 = A( x*(1+x)*A(x)^7 + x^2*(1+x)^2*A(x)^8 + x^2*(1+x)^2*A(x)^10 + 2*x^3*(1+x)^3*A(x)^11 + x^4*(1+x)^4*A(x)^12 ).
(4) x^2 = A( x*B(x)*(1 + B(x)) ) where A(B(x)) = x.
a(n) ~ c * d^n / n^(3/2), where d = 3.0870367560295429... and c = 0.17761867899908... - Vaclav Kotesovec, Jul 19 2024