cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374580 a(n) is the numerator of (120*n^2 + 151*n + 47)/(512*n^4 + 1024*n^3 + 712*n^2 + 194*n + 15).

Original entry on oeis.org

47, 106, 829, 316, 857, 3802, 5273, 776, 1787, 11126, 4519, 16228, 19139, 1486, 25681, 29312, 3687, 37294, 8329, 15412, 51067, 56138, 20483, 2680, 72791, 8758, 85093, 91604, 6557, 105346, 112577, 40016, 127759, 27142, 15989, 152332, 161003, 56638, 35813, 188456
Offset: 0

Views

Author

Paolo Xausa, Jul 12 2024

Keywords

Comments

See Bailey and Crandall (2001), section 5 (pp. 183-184) for a derivation of this rational polynomial.
Denominators are given by A374581.

Crossrefs

Cf. A000796, A001025, A374334, A374581 (denominators), A374607.

Programs

  • Mathematica
    A374580[n_] := Numerator[(120*n^2 + 151*n + 47)/(512*n^4 + 1024*n^3 + 712*n^2 + 194*n + 15)];
    Array[A374580, 50, 0]
  • Python
    from math import gcd
    def A374580(n): return (lambda p,q: p//gcd(p,q))(n*(120*n + 151) + 47,n*(n*(n*(512*n + 1024) + 712) + 194) + 15) # Chai Wah Wu, Jul 14 2024

Formula

Sum_{n >= 0} (1/16^n)*a(n)/A374581(n) = A000796. See Bailey and Crandall (2001), eq. 5-2, p. 184.