A374580 a(n) is the numerator of (120*n^2 + 151*n + 47)/(512*n^4 + 1024*n^3 + 712*n^2 + 194*n + 15).
47, 106, 829, 316, 857, 3802, 5273, 776, 1787, 11126, 4519, 16228, 19139, 1486, 25681, 29312, 3687, 37294, 8329, 15412, 51067, 56138, 20483, 2680, 72791, 8758, 85093, 91604, 6557, 105346, 112577, 40016, 127759, 27142, 15989, 152332, 161003, 56638, 35813, 188456
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- David H. Bailey and Richard E. Crandall, On the Random Character of Fundamental Constant Expansions, Experimental Mathematics, Vol. 10 (2001), Issue 2, pp. 175-190 (preprint draft).
Programs
-
Mathematica
A374580[n_] := Numerator[(120*n^2 + 151*n + 47)/(512*n^4 + 1024*n^3 + 712*n^2 + 194*n + 15)]; Array[A374580, 50, 0]
-
Python
from math import gcd def A374580(n): return (lambda p,q: p//gcd(p,q))(n*(120*n + 151) + 47,n*(n*(n*(512*n + 1024) + 712) + 194) + 15) # Chai Wah Wu, Jul 14 2024
Comments