A374585 A family of marked Motzkin-like paths.
1, 1, 1, 1, 3, 9, 21, 41, 79, 169, 393, 913, 2051, 4537, 10165, 23257, 53759, 124153, 286009, 660161, 1531875, 3571753, 8348981, 19539209, 45792719, 107546633, 253153609, 597034609, 1410131683, 3334984025, 7897992213, 18730123449, 44476842431, 105740699609, 251664629689
Offset: 0
Crossrefs
Cf. A023426.
Programs
-
Mathematica
CoefficientList[Series[((1-t)^2-Sqrt[1-4t+6t^2-4t^3-7t^4+8t^5])/(4t^4),{t,0,100}],t] Table[Sum[Binomial[n-k,3k] 2^k CatalanNumber[k], {k,0,n/4}], {n,0,100}]
Formula
G.f: A(t) = ((1-t)^2-sqrt(1-4*t+6*t^2-4*t^3-7*t^4+8*t^5))/(4*t^4).
G.f. A(x) satisfies: A(t) = 1+t*A(t)+t*(A(t)-1-t*A(t))+2*t^4*A(t)^2, or 2*t^4*A(t)^2-(1-t)^2*A(t)+1-t = 0.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-k,3*k)*2^k*Catalan(k).
Recurrence: a(n+4) = 2*a(n+3) - a(n+2) + 2*Sum_{k=0..n} a(k)*a(n-k).
D-finite with recurrence: (n+9)*a(n+5) -2*(2*n+15)*a(n+4) +6*(n+6)*a(n+3) -2*(2*n+9)*a(n+2) -7*(n+3)*a(n+1) +4*(2*n+3)*a(n)=0.
a(n) ~ (1/2)*sqrt((4-X)/(2*Pi))*X^(-n-2)/n^(3/2),
where X = 0.40355658567370456... is the unique positive real root of 8*x^3-7*x^2+4*x-1.
Comments