cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374642 Decimal expansion of log(1111111111/387420489).

Original entry on oeis.org

1, 0, 5, 3, 6, 0, 5, 1, 5, 6, 4, 7, 8, 2, 6, 3, 0, 1, 2, 2, 7, 0, 0, 0, 9, 8, 0, 8, 3, 9, 2, 7, 9, 4, 6, 4, 9, 7, 2, 7, 8, 4, 5, 3, 9, 6, 4, 9, 9, 4, 0, 5, 3, 9, 2, 3, 0, 6, 0, 5, 8, 8, 3, 6, 9, 2, 5, 8, 4, 0, 2, 1, 8, 1, 1, 5, 6, 3, 1, 1, 7, 7, 9, 2, 3, 3, 7, 1, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Jul 15 2024

Keywords

Examples

			1.053605156478263012270009808392794649727845396499...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Log[1111111111/387420489], 10, 100]]
  • PARI
    log(1111111111/387420489) \\ Charles R Greathouse IV, Nov 21 2024

Formula

Equals 10^(-8)*Sum_{k >= 0} 1/(10^(10*k))*(Sum{j = 1..9} 10^(9-j)/(10*k + j)). See Bailey and Crandall (2001), p. 185.

A374643 Decimal expansion of 12*Li_2(1/2), where Li_2(z) is the dilogarithm function.

Original entry on oeis.org

6, 9, 8, 6, 8, 8, 6, 3, 1, 7, 5, 8, 0, 1, 5, 0, 0, 7, 0, 8, 3, 1, 8, 7, 5, 8, 4, 1, 9, 1, 6, 1, 6, 1, 3, 0, 4, 9, 3, 0, 3, 8, 1, 6, 9, 7, 6, 7, 3, 5, 1, 7, 1, 0, 5, 2, 1, 2, 1, 6, 4, 5, 7, 4, 4, 7, 8, 0, 5, 2, 5, 2, 8, 8, 6, 0, 1, 9, 8, 4, 0, 9, 8, 0, 2, 0, 8, 3, 8, 2
Offset: 1

Views

Author

Paolo Xausa, Jul 15 2024

Keywords

Examples

			6.98688631758015007083187584191616130493038169767...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[12*PolyLog[2, 1/2], 10, 100]]

Formula

Equals 12*A076788.
Equals Pi^2 - 6*log(2)^2 = A002388 - 6*A253191 = 12*Sum_{k >= 1} 1/((2^k)*(k^2)). See Bailey et al. (1997), eq. 2.7, p. 906 and Bailey and Crandall (2001), p. 184.

A374644 Decimal expansion of 24*Li_3(1/2), where Li_m(z) is the polylogarithm function.

Original entry on oeis.org

1, 2, 8, 9, 3, 1, 1, 6, 6, 4, 6, 5, 9, 2, 9, 6, 4, 8, 2, 2, 5, 7, 4, 9, 5, 7, 4, 1, 4, 2, 7, 9, 1, 7, 9, 8, 4, 0, 0, 8, 9, 6, 5, 9, 9, 8, 4, 1, 6, 9, 0, 7, 6, 0, 9, 6, 5, 5, 4, 2, 8, 6, 3, 3, 7, 2, 3, 9, 7, 7, 7, 9, 4, 2, 0, 8, 3, 3, 2, 1, 5, 3, 5, 9, 2, 9, 8, 9, 6, 6
Offset: 2

Views

Author

Paolo Xausa, Jul 15 2024

Keywords

Examples

			12.893116646592964822574957414279179840089659984...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[24*PolyLog[3, 1/2], 10, 100]]

Formula

Equals 24*A099217.
Equals 4*log(2)^3 + 21*zeta(3) - 2*Pi^2*log(2) = 4*A002162^3 + 21*A002117 - 2*A352769 = 24*Sum_{k >= 1} 1/((2^k)*(k^3)). See Bailey and Crandall (2001), p. 184.
Showing 1-3 of 3 results.