A374669 a(n) is the least number with n prime factors (counted with multiplicity) that is the concatenation of two primes.
23, 22, 27, 132, 32, 729, 192, 2112, 1792, 5632, 3072, 59392, 64512, 90112, 110592, 950272, 2260992, 3244032, 786432, 30277632, 7340032, 23068672, 12582912, 494927872, 1333788672, 1375731712, 704643072, 3892314112, 1879048192, 37446746112, 27380416512, 196494753792, 30064771072, 94489280512
Offset: 1
Examples
a(4) = 132 because 132 = 2^2 * 3 * 11 is the product of 4 primes (counted with multiplicity) and is the concatenation of the two primes 13 and 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
cp:= proc(n) local k; if n::even then n mod 10 = 2 and isprime((n-2)/10) elif n mod 5 = 0 then isprime((n-5)/10) else for k from 1 to ilog10(n) do if isprime(n mod 10^k) and isprime(floor(n/10^k)) then return true fi od; false fi end proc: f:= proc(n) uses priqueue; local pq, p, q, T, TP, j, v; initialize(pq); insert([-2^n,2$n],pq); do T:= extract(pq); v:= -T[1]; if cp(v) then return(v) fi; q:= T[-1]; p:= nextprime(q); for j from n+1 to 2 by -1 do if T[j] <> q then break fi; TP:= [T[1]*(p/q)^(n+2-j), op(T[2..j-1]), p$(n+2-j)]; insert(TP, pq) od od; end proc: map(f, [$1..30]);