cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A127583 Decimal expansion of smallest univoque Pisot Number.

Original entry on oeis.org

1, 8, 8, 0, 0, 0, 0, 4, 7, 8, 6, 5, 5, 5, 5, 1, 1, 8, 2, 8, 1, 8, 0, 6, 8, 9, 6, 9, 8, 9, 9, 4, 7, 9, 1, 1, 0, 6, 4, 5, 6, 0, 8, 3, 9, 4, 8, 2, 2, 6, 0, 5, 7, 8, 5, 0, 9, 9, 8, 0, 6, 9, 2, 0, 9, 2, 6, 3, 5, 0, 3, 0, 7, 5, 4, 0, 1, 4, 2, 3, 5, 6, 7, 7, 0, 7, 2, 8, 5, 0, 4, 4, 2, 9, 6, 4, 9, 7, 6, 7, 2, 2, 4, 4, 9
Offset: 1

Views

Author

R. J. Mathar, Jun 13 2007

Keywords

Comments

The 2nd and 3rd smallest univoque Pisot numbers are 1.8866814375493413002581625771460337570154853175085... (A374750) and 1.9051661677540189095727878303640157935069696492981... (A374751).

Examples

			1.88000047865555118281806896989947911064560839482260578509980692092...
		

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[ FindRoot[ x^14 - 2 x^13 + x^11 - x^10 - x^7 + x^6 - x^4 + x^3 - x + 1, {x, 1.88}, WorkingPrecision -> 111][[1, 2]]] (* Robert G. Wilson v, Jul 17 2007 *)
    RealDigits[Root[x^14-2x^13+x^11-x^10-x^7+x^6-x^4+x^3-x+1,2],10,120][[1]] (* Harvey P. Dale, Jan 18 2024 *)

Formula

The largest real root of x^14 - 2*x^13 + x^11 - x^10 - x^7 + x^6 - x^4 + x^3 - x + 1. - Robert G. Wilson v, Jul 17 2007 (corrected, Joerg Arndt, Jun 13 2015)

Extensions

More terms from Robert G. Wilson v, Jul 17 2007

A374751 Decimal expansion of the third smallest univoque Pisot number.

Original entry on oeis.org

1, 9, 0, 5, 1, 6, 6, 1, 6, 7, 7, 5, 4, 0, 1, 8, 9, 0, 9, 5, 7, 2, 7, 8, 7, 8, 3, 0, 3, 6, 4, 0, 1, 5, 7, 9, 3, 5, 0, 6, 9, 6, 9, 6, 4, 9, 2, 9, 8, 1, 0, 5, 1, 8, 5, 0, 6, 4, 9, 1, 3, 4, 9, 5, 4, 2, 3, 1, 0, 7, 6, 4, 2, 7, 7, 7, 0, 8, 5, 9, 4, 3, 4, 5, 0, 4, 1, 3, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Jul 18 2024

Keywords

Comments

This number is denoted by Allouche et al. (2007) as chi. It's the unique Pisot number of degree 4 which is univoque (see Remark 4.1, p. 1646), and the smallest limit point of univoque Pisot numbers (see Theorem 5.3, p. 1651).

Examples

			1.905166167754018909572787830364015793506969649298...
		

Crossrefs

Cf. A127583 (smallest), A374750 (second smallest), A374752.

Programs

  • Mathematica
    First[RealDigits[Root[#^4 - #^3 - 2*#^2 + 1 &, 2], 10, 100]]

Formula

Equals the real root > 1 of x^4 - x^3 - 2*x^2 + 1.
Showing 1-2 of 2 results.