A374757 Irregular triangle read by rows where row n lists the leaders of strictly decreasing runs in the n-th composition in standard order.
1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 5, 4, 3, 3, 1, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 4, 1, 3, 1, 2, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 5, 4, 4, 1, 3, 3, 3, 3, 2, 3, 1, 1, 2, 4, 2, 3
Offset: 0
Examples
the 1234567th composition in standard order is (3,2,1,2,2,1,2,5,1,1,1), with strictly decreasing runs ((3,2,1),(2),(2,1),(2),(5,1),(1),(1)), so row 1234567 is (3,2,2,2,5,1,1). The nonnegative integers, corresponding compositions, and leaders of strictly decreasing runs begin: 0: () -> () 15: (1,1,1,1) -> (1,1,1,1) 1: (1) -> (1) 16: (5) -> (5) 2: (2) -> (2) 17: (4,1) -> (4) 3: (1,1) -> (1,1) 18: (3,2) -> (3) 4: (3) -> (3) 19: (3,1,1) -> (3,1) 5: (2,1) -> (2) 20: (2,3) -> (2,3) 6: (1,2) -> (1,2) 21: (2,2,1) -> (2,2) 7: (1,1,1) -> (1,1,1) 22: (2,1,2) -> (2,2) 8: (4) -> (4) 23: (2,1,1,1) -> (2,1,1) 9: (3,1) -> (3) 24: (1,4) -> (1,4) 10: (2,2) -> (2,2) 25: (1,3,1) -> (1,3) 11: (2,1,1) -> (2,1) 26: (1,2,2) -> (1,2,2) 12: (1,3) -> (1,3) 27: (1,2,1,1) -> (1,2,1) 13: (1,2,1) -> (1,2) 28: (1,1,3) -> (1,1,3) 14: (1,1,2) -> (1,1,2) 29: (1,1,2,1) -> (1,1,2)
Links
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Table[First/@Split[stc[n],Greater],{n,0,100}]
Comments