A374629
Irregular triangle listing the leaders of maximal weakly increasing runs in the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 3, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
The 58654th composition in standard order is (1,1,3,2,4,1,1,1,2), with maximal weakly increasing runs ((1,1,3),(2,4),(1,1,1,2)), so row 58654 is (1,2,1).
The nonnegative integers, corresponding compositions, and leaders of maximal weakly increasing runs begin:
0: () -> () 15: (1,1,1,1) -> (1)
1: (1) -> (1) 16: (5) -> (5)
2: (2) -> (2) 17: (4,1) -> (4,1)
3: (1,1) -> (1) 18: (3,2) -> (3,2)
4: (3) -> (3) 19: (3,1,1) -> (3,1)
5: (2,1) -> (2,1) 20: (2,3) -> (2)
6: (1,2) -> (1) 21: (2,2,1) -> (2,1)
7: (1,1,1) -> (1) 22: (2,1,2) -> (2,1)
8: (4) -> (4) 23: (2,1,1,1) -> (2,1)
9: (3,1) -> (3,1) 24: (1,4) -> (1)
10: (2,2) -> (2) 25: (1,3,1) -> (1,1)
11: (2,1,1) -> (2,1) 26: (1,2,2) -> (1)
12: (1,3) -> (1) 27: (1,2,1,1) -> (1,1)
13: (1,2,1) -> (1,1) 28: (1,1,3) -> (1)
14: (1,1,2) -> (1) 29: (1,1,2,1) -> (1,1)
Positions of non-weakly decreasing rows are
A375137.
A335456 counts patterns matched by compositions.
All of the following pertain to compositions in standard order:
- Ranks of non-contiguous compositions are
A374253, counted by
A335548.
Cf.
A046660,
A106356,
A188920,
A189076,
A238343,
A272919,
A333213,
A373949,
A374634,
A374635,
A374637,
A374701,
A375123.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[First/@Split[stc[n],LessEqual],{n,0,100}]
A374683
Irregular triangle read by rows where row n lists the leaders of strictly increasing runs in the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 3, 3, 2, 1, 3, 1, 3, 1, 1, 1
Offset: 0
The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)), so row 1234567 is (3,2,1,2,1,1,1,1).
The nonnegative integers, corresponding compositions, and leaders of strictly increasing runs begin:
0: () -> () 15: (1,1,1,1) -> (1,1,1,1)
1: (1) -> (1) 16: (5) -> (5)
2: (2) -> (2) 17: (4,1) -> (4,1)
3: (1,1) -> (1,1) 18: (3,2) -> (3,2)
4: (3) -> (3) 19: (3,1,1) -> (3,1,1)
5: (2,1) -> (2,1) 20: (2,3) -> (2)
6: (1,2) -> (1) 21: (2,2,1) -> (2,2,1)
7: (1,1,1) -> (1,1,1) 22: (2,1,2) -> (2,1)
8: (4) -> (4) 23: (2,1,1,1) -> (2,1,1,1)
9: (3,1) -> (3,1) 24: (1,4) -> (1)
10: (2,2) -> (2,2) 25: (1,3,1) -> (1,1)
11: (2,1,1) -> (2,1,1) 26: (1,2,2) -> (1,2)
12: (1,3) -> (1) 27: (1,2,1,1) -> (1,1,1)
13: (1,2,1) -> (1,1) 28: (1,1,3) -> (1,1)
14: (1,1,2) -> (1,1) 29: (1,1,2,1) -> (1,1,1)
All of the following pertain to compositions in standard order:
- Ranks of non-contiguous compositions are
A374253, counted by
A335548.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[First/@Split[stc[n],Less],{n,0,100}]
A374740
Irregular triangle read by rows where row n lists the leaders of weakly decreasing runs in the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 2, 1, 4, 3, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 4, 3, 3, 2, 3, 2, 2, 2, 2, 1, 4, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 5, 1, 4, 1, 3, 1, 3, 1, 2, 3, 1, 2, 1, 2, 2, 1, 2, 1, 4
Offset: 0
The maximal weakly decreasing subsequences of the 1234567th composition in standard order are ((3,2,1),(2,2,1),(2),(5,1,1,1)), so row 1234567 is (3,2,2,5).
The nonnegative integers, corresponding compositions, and leaders of weakly decreasing runs begin:
0: () -> () 15: (1,1,1,1) -> (1)
1: (1) -> (1) 16: (5) -> (5)
2: (2) -> (2) 17: (4,1) -> (4)
3: (1,1) -> (1) 18: (3,2) -> (3)
4: (3) -> (3) 19: (3,1,1) -> (3)
5: (2,1) -> (2) 20: (2,3) -> (2,3)
6: (1,2) -> (1,2) 21: (2,2,1) -> (2)
7: (1,1,1) -> (1) 22: (2,1,2) -> (2,2)
8: (4) -> (4) 23: (2,1,1,1) -> (2)
9: (3,1) -> (3) 24: (1,4) -> (1,4)
10: (2,2) -> (2) 25: (1,3,1) -> (1,3)
11: (2,1,1) -> (2) 26: (1,2,2) -> (1,2)
12: (1,3) -> (1,3) 27: (1,2,1,1) -> (1,2)
13: (1,2,1) -> (1,2) 28: (1,1,3) -> (1,3)
14: (1,1,2) -> (1,2) 29: (1,1,2,1) -> (1,2)
All of the following pertain to compositions in standard order:
- Ranks of non-contiguous compositions are
A374253, counted by
A335548.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[First/@Split[stc[n],GreaterEqual],{n,0,100}]
A374515
Irregular triangle read by rows where row n lists the leaders of anti-runs in the n-th composition in standard order.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 3, 3, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 4, 4, 1, 3, 3, 3, 3, 3, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 0
The maximal anti-runs of the 1234567th composition in standard order are ((3,2,1,2),(2,1,2,5,1),(1),(1)), so row 1234567 is (3,2,1,1).
The nonnegative integers, corresponding compositions, and leaders of anti-runs begin:
0: () -> () 15: (1,1,1,1) -> (1,1,1,1)
1: (1) -> (1) 16: (5) -> (5)
2: (2) -> (2) 17: (4,1) -> (4)
3: (1,1) -> (1,1) 18: (3,2) -> (3)
4: (3) -> (3) 19: (3,1,1) -> (3,1)
5: (2,1) -> (2) 20: (2,3) -> (2)
6: (1,2) -> (1) 21: (2,2,1) -> (2,2)
7: (1,1,1) -> (1,1,1) 22: (2,1,2) -> (2)
8: (4) -> (4) 23: (2,1,1,1) -> (2,1,1)
9: (3,1) -> (3) 24: (1,4) -> (1)
10: (2,2) -> (2,2) 25: (1,3,1) -> (1)
11: (2,1,1) -> (2,1) 26: (1,2,2) -> (1,2)
12: (1,3) -> (1) 27: (1,2,1,1) -> (1,1)
13: (1,2,1) -> (1) 28: (1,1,3) -> (1,1)
14: (1,1,2) -> (1,1) 29: (1,1,2,1) -> (1,1)
Row-leaders of nonempty rows are
A065120.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
Six types of maximal runs:
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[First/@Split[stc[n],UnsameQ],{n,0,100}]
A374767
Numbers k such that the leaders of strictly decreasing runs in the k-th composition in standard order are distinct.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 24, 25, 32, 33, 34, 35, 37, 38, 40, 41, 44, 48, 49, 50, 52, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 77, 78, 80, 81, 82, 83, 88, 89, 92, 96, 97, 98, 101, 102, 104, 105, 108, 128, 129, 130, 131, 132, 133
Offset: 1
The 10000000th composition in standard order is (3,1,4,3,2,1,2,8), with strictly decreasing runs ((3,1),(4,3,2,1),(2),(8)), with leaders (3,4,2,1) so 10000000 is in the sequence.
The terms together with the corresponding compositions begin:
0: ()
1: (1)
2: (2)
4: (3)
5: (2,1)
6: (1,2)
8: (4)
9: (3,1)
11: (2,1,1)
12: (1,3)
13: (1,2,1)
16: (5)
17: (4,1)
18: (3,2)
19: (3,1,1)
20: (2,3)
24: (1,4)
25: (1,3,1)
For identical instead of distinct runs we have
A374759, counted by
A374760.
Compositions of this type are counted by
A374761.
All of the following pertain to compositions in standard order:
Six types of runs:
Cf.
A065120,
A106356,
A188920,
A233564,
A238343,
A272919,
A333213,
A373949,
A374633,
A374685,
A374744,
A374758,
A375128.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],UnsameQ@@First/@Split[stc[#],Greater]&]
A374638
Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are distinct.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 24, 25, 26, 32, 33, 34, 35, 37, 38, 40, 41, 44, 45, 46, 48, 49, 50, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 88, 89, 91, 92, 93, 96, 97, 98, 100, 101, 102, 104
Offset: 1
The terms together with corresponding compositions begin:
0: ()
1: (1)
2: (2)
4: (3)
5: (2,1)
6: (1,2)
8: (4)
9: (3,1)
11: (2,1,1)
12: (1,3)
13: (1,2,1)
16: (5)
17: (4,1)
18: (3,2)
19: (3,1,1)
20: (2,3)
22: (2,1,2)
24: (1,4)
25: (1,3,1)
26: (1,2,2)
Positions of distinct (strict) rows in
A374515.
Compositions of this type are counted by
A374518.
For identical instead of distinct we have
A374519, counted by
A374517.
Other types of runs (instead of anti-):
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
Six types of maximal runs:
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],UnsameQ@@First/@Split[stc[#],UnsameQ]&]
A374519
Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are identical.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 73, 76, 77, 80, 81, 82, 84, 85
Offset: 1
The 346th composition in standard order is (2,2,1,2,2), with anti-runs ((2),(2,1,2),(2)), with leaders (2,2,2), so 346 is in the sequence.
Positions of constant rows in
A374515.
Compositions of this type are counted by
A374517.
For distinct instead of identical leaders we have
A374638, counted by
A374518.
Other types of runs (instead of anti-):
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs.
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
Six types of maximal runs:
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],SameQ@@First/@Split[stc[#],UnsameQ]&]
A375123
Weakly increasing run-leader transformation for standard compositions.
Original entry on oeis.org
0, 1, 2, 1, 4, 5, 1, 1, 8, 9, 2, 5, 1, 3, 1, 1, 16, 17, 18, 9, 2, 5, 5, 5, 1, 3, 1, 3, 1, 3, 1, 1, 32, 33, 34, 17, 4, 37, 9, 9, 2, 5, 2, 5, 5, 11, 5, 5, 1, 3, 6, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 64, 65, 66, 33, 68, 69, 17, 17, 4, 9, 18, 37, 9, 19, 9, 9
Offset: 0
The 813th composition in standard order is (1,3,2,1,2,1), with weakly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
The strict opposite version is
A375126.
All of the following pertain to compositions in standard order:
- Run-sum transformation is
A353847.
Six types of runs:
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
Table[stcinv[First/@Split[stc[n],LessEqual]],{n,0,100}]
A374759
Numbers k such that the leaders of strictly decreasing runs in the k-th composition in standard order are identical.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 16, 17, 18, 21, 22, 31, 32, 33, 34, 36, 37, 42, 45, 63, 64, 65, 66, 68, 69, 73, 76, 85, 86, 90, 127, 128, 129, 130, 132, 133, 136, 137, 146, 148, 153, 170, 173, 181, 182
Offset: 1
The 18789th composition in standard order is (3,3,2,1,3,2,1), with strictly decreasing runs ((3),(3,2,1),(3,2,1)), with leaders (3,3,3), so 18789 is in the sequence.
The terms together with the corresponding compositions begin:
0: ()
1: (1)
2: (2)
3: (1,1)
4: (3)
5: (2,1)
7: (1,1,1)
8: (4)
9: (3,1)
10: (2,2)
15: (1,1,1,1)
16: (5)
17: (4,1)
18: (3,2)
21: (2,2,1)
22: (2,1,2)
31: (1,1,1,1,1)
32: (6)
33: (5,1)
34: (4,2)
36: (3,3)
37: (3,2,1)
For leaders of weakly increasing runs we have
A374633, counted by
A374631.
Compositions of this type are counted by
A374760.
For distinct instead of identical runs we have
A374767 (counted by
A374761).
All of the following pertain to compositions in standard order:
- Ranks of non-contiguous compositions are
A374253, counted by
A335548.
Six types of runs:
Cf.
A000961,
A065120,
A106356,
A188920,
A189076,
A238343,
A272919,
A333213,
A374698,
A374706,
A374758,
A375128.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],SameQ@@First/@Split[stc[#],Greater]&]
A375133
Number of integer partitions of n whose maximal anti-runs have distinct maxima.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 5, 8, 10, 14, 17, 23, 29, 38, 47, 60, 74, 93, 113, 141, 171, 211, 253, 309, 370, 447, 532, 639, 758, 904, 1066, 1265, 1487, 1754, 2053, 2411, 2813, 3289, 3823, 4454, 5161, 5990, 6920, 8005, 9223, 10634, 12218, 14048, 16101, 18462, 21107
Offset: 0
The partition y = (6,5,5,4,3,3,2,1) has maximal anti-runs ((6,5),(5,4,3),(3,2,1)), with maxima (6,5,3), so y is counted under a(29).
The a(0) = 1 through a(9) = 14 partitions:
() (1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(311) (321) (61) (71) (72)
(411) (322) (422) (81)
(421) (431) (432)
(511) (521) (522)
(3211) (611) (531)
(3221) (621)
(4211) (711)
(4221)
(4311)
(5211)
(32211)
Includes all strict partitions
A000009.
For compositions instead of partitions we have
A374761.
The complement for minima instead of maxima is
A375404, ranks
A375399.
A011782 counts integer compositions.
A055887 counts sequences of partitions with total sum n.
A375128 lists minima of maximal anti-runs of prime indices, sums
A374706.
Cf.
A141199,
A279790,
A358830,
A358833,
A358836,
A358905,
A374704,
A374757,
A374758,
A375136,
A375400.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@Max/@Split[#,UnsameQ]&]],{n,0,30}]
-
A_x(N) = {my(x='x+O('x^N), f=sum(i=0,N,(x^i)*prod(j=1,i-1,(1-x^(3*j))/(1-x^j)))); Vec(f)}
A_x(51) \\ John Tyler Rascoe, Aug 21 2024
Showing 1-10 of 26 results.
Comments