cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374782 Number of partitions of n that do not have a fixed point that is also a fixed point of the conjugate partition.

Original entry on oeis.org

1, 0, 2, 3, 4, 5, 8, 11, 17, 23, 33, 43, 60, 77, 104, 134, 177, 226, 295, 373, 480, 604, 766, 957, 1204, 1492, 1860, 2294, 2836, 3477, 4273, 5209, 6362, 7721, 9375, 11326, 13687, 16460, 19799, 23720, 28406, 33901, 40443, 48092, 57159, 67747, 80237, 94799
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(2) = 2: 2, 11.
a(3) = 3: 3, 21, 111.
a(4) = 4: 4, 31, 211, 1111.
a(5) = 5: 5, 41, 311, 2111, 11111.
a(6) = 8: 6, 33, 51, 222, 411, 3111, 21111, 111111.
a(7) = 11: 7, 43, 61, 322, 331, 511, 2221, 4111, 31111, 211111, 1111111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1, p)+add(`if`(i=p+j, 0,
          b(n-i*j, min(n-i*j, i-1), p+j)), j=1..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..47);

Formula

a(n) = A000041(n) - A188674(n) for n > 0, a(0) = 1.