A374782 Number of partitions of n that do not have a fixed point that is also a fixed point of the conjugate partition.
1, 0, 2, 3, 4, 5, 8, 11, 17, 23, 33, 43, 60, 77, 104, 134, 177, 226, 295, 373, 480, 604, 766, 957, 1204, 1492, 1860, 2294, 2836, 3477, 4273, 5209, 6362, 7721, 9375, 11326, 13687, 16460, 19799, 23720, 28406, 33901, 40443, 48092, 57159, 67747, 80237, 94799
Offset: 0
Keywords
Examples
a(0) = 1: the empty partition. a(2) = 2: 2, 11. a(3) = 3: 3, 21, 111. a(4) = 4: 4, 31, 211, 1111. a(5) = 5: 5, 41, 311, 2111, 11111. a(6) = 8: 6, 33, 51, 222, 411, 3111, 21111, 111111. a(7) = 11: 7, 43, 61, 322, 331, 511, 2221, 4111, 31111, 211111, 1111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2500
- Wikipedia, Partition (number theory)
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, p)+add(`if`(i=p+j, 0, b(n-i*j, min(n-i*j, i-1), p+j)), j=1..n/i))) end: a:= n-> b(n$2, 0): seq(a(n), n=0..47);