cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374783 Numerator of the mean unitary abundancy index of the unitary divisors of n.

Original entry on oeis.org

1, 5, 7, 9, 11, 35, 15, 17, 19, 11, 23, 21, 27, 75, 77, 33, 35, 95, 39, 99, 5, 115, 47, 119, 51, 135, 55, 135, 59, 77, 63, 65, 161, 175, 33, 19, 75, 195, 63, 187, 83, 25, 87, 207, 209, 235, 95, 77, 99, 51, 245, 243, 107, 275, 23, 255, 91, 295, 119, 231, 123, 315
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Comments

The unitary abundancy index of a number k is A034448(k)/k = A332882(k)/A332883(k).
The record values of a(n)/A374784(n) are attained at the primorial numbers (A002110).
The least number k such that a(k)/A374784(k) is larger than 2, 3, 4, ..., is A002110(9) = 223092870, A002110(314) = 7.488... * 10^878, A002110(65599) = 5.373... * 10^356774, ... .

Examples

			For n = 4, 4 has 2 unitary divisors, 1 and 4. Their unitary abundancy indices are usigma(1)/1 = 1 and usigma(4)/4 = 5/4, and their mean unitary abundancy index is (1 + 5/4)/2 = 9/8. Therefore a(4) = numerator(9/8) = 9.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + 1/(2*p^e); a[1] = 1; a[n_] := Numerator[Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); numerator(prod(i = 1, #f~, 1 + 1/(2*f[i,1]^f[i,2])));}

Formula

Let f(n) = a(n)/A374784(n). Then:
f(n) = (Sum_{d|n, gcd(d, n/d) = 1} usigma(d)/d) / ud(n), where usigma(n) is the sum of unitary divisors of n (A034448), and ud(n) is their number (A034444).
f(n) is multiplicative with f(p^e) = 1 + 1/(2*p^e).
f(n) = (Sum_{d|n, gcd(d, n/d) = 1} d*ud(d))/(n*ud(n)) = A343525(n)/(n*A034444(n)).
Dirichlet g.f. of f(n): zeta(s) * zeta(s+1) * Product_{p prime} (1 - 1/(2*p^(s+1)) - 1/(2*p^(2*s+1))).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} f(k) = Product_{p prime} (1 + 1/(2*p*(p+1))) = 1.17443669198552182119... . For comparison, the asymptotic mean of the unitary abundancy index over all the positive integers is zeta(2)/zeta(3) = 1.368432... (A306633).
Lim sup_{n->oo} f(n) = oo (i.e., f(n) is unbounded).
f(n) <= A374777(n)/A374778(n) with equality if and only if n is squarefree (A005117).