A374840 a(n) is the greatest m > 0 such that the n-th row of Pascal's triangle (A007318) contains a multiple of k for k = 1..m.
1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 3, 12, 6, 4, 1, 16, 2, 18, 4, 6, 10, 22, 3, 4, 12, 2, 6, 28, 15, 30, 1, 10, 16, 6, 8, 36, 18, 12, 7, 40, 6, 42, 10, 8, 22, 46, 3, 6, 4, 16, 12, 52, 2, 10, 7, 18, 28, 58, 15, 60, 30, 8, 1, 12, 10, 66, 16, 22, 24, 70, 8, 72, 36
Offset: 0
Keywords
Examples
For n = 6: the sixth row of Pascal's triangle is 1, 6, 15, 20, 15, 6, 1; it contains a multiple of 1 (1), of 2 (6), of 3 (6), of 4 (20), of 5 (15), of 6 (6), but not of 7, so a(6) = 6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
A374840 := proc(n) local dvsn ,m,a; if n = 0 then return 1; end if; dvsn := {} ; for m from 1 to (n+2)/2 do binomial(n,m) ; dvsn := dvsn union numtheory[divisors](%) ; end do: for a from 1 do if not a in dvsn then return a-1 ; end if; end do: end proc: seq(A374840(n),n=0..40) ; # R. J. Mathar, Jul 30 2024 # second Maple program: a:= proc(n) local k, s; s:= {seq(binomial(n,k), k=0..n/2)}; for k while ormap(x-> irem(x, k)=0, s) do od: k-1 end: seq(a(n), n=0..73); # Alois P. Heinz, Sep 04 2024
-
Mathematica
a[n_] := If[n == 0, 1, Module[{dd, m, k}, dd = {}; For[m = 1, m <= (n + 2)/2, m++, dd = Union[dd, Divisors[Binomial[n, m]]]]; For[k = 1, True, k++, If[FreeQ[dd, k], Return[k - 1]]]]]; Table[a[n], {n, 0, 73}] (* Jean-François Alcover, Sep 04 2024, after R. J. Mathar *)
-
PARI
a(n) = { my (b = binomial(n)[1..(n+2)\2]); for (m = 2, oo, ok = 0; for (i = 1, #b, if (b[i] % m==0, next(2); ); ); return (m-1); ); }
Comments