A374846 Numbers appearing exactly once in a Pythagorean triple.
3, 4, 6, 7, 11, 14, 19, 22, 23, 31, 38, 43, 46, 47, 59, 62, 67, 71, 79, 83, 86, 94, 103, 107, 118, 127, 131, 134, 139, 142, 151, 158, 163, 166, 167, 179, 191, 199, 206, 211, 214, 223, 227, 239, 251, 254, 262, 263, 271, 278, 283, 302, 307, 311, 326, 331, 334, 347, 358, 359, 367, 379, 382, 383, 398
Offset: 1
Keywords
Links
- A. Tripathi, On Pythagorean triples containing a fixed integer, Fib. Q., 46/47 (2008/2009), 331-340. See Theorem 8.
Programs
-
Mathematica
t={}; Do[If[(PrimeQ[n] && Mod[n, 4] == 3) || (PrimeQ[n/2] && Mod [n/2, 4] == 3), t = Join[t, {n}]], {n, 445}]; t = Insert[t, 4, 2] (* Positions of the ones in A046081; based on program by Jean-François Alcover *) a[1] = 0; a[n_] := Module[{f}, f = Select[FactorInteger[n], Mod[#[[1]], 4] == 1 &][[All, 2]]; (DivisorSigma[0, If[OddQ[n], n, n/2]^2] - 1)/2 + (Times @@ (2*f + 1) - 1)/2]; arr = Array[a, 445]; fl = Flatten[Position[arr, 1]]
-
Python
from itertools import count, islice from sympy import isprime def A374846_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:n==4 or (isprime(n) and n&3==3) or (isprime(n>>1) and n&7==6), count(max(startvalue,1))) A374846_list = list(islice(A374846_gen(),20)) # Chai Wah Wu, Jul 31 2024
Formula
p or 2p with p prime and p = 3 mod 4, with 4 added to the sequence, in ascending order.
Comments