cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374930 Expansion of Sum_{1<=i<=j<=k} q^(i+j+k)/( (1-q^i)*(1-q^j)*(1-q^k) )^2.

Original entry on oeis.org

1, 7, 27, 77, 181, 378, 707, 1254, 2052, 3290, 4928, 7371, 10381, 14756, 19818, 27158, 35139, 46683, 58806, 76146, 93555, 119092, 143222, 178983, 212408, 261261, 305046, 371931, 428156, 515592, 589385, 701442, 792720, 939918, 1050567, 1233387, 1374835, 1600143, 1766583, 2052898, 2247784
Offset: 3

Views

Author

Seiichi Manyama, Jul 24 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A374930[n_] := (31*DivisorSigma[5, n] - 70*(n + 1)*DivisorSigma[3, n] + (40*n^2 + 60*n + 9)*DivisorSigma[1, n])/1920;
    Array[A374930, 50, 3] (* Paolo Xausa, Jul 24 2024 *)
  • PARI
    a(n) = (31*sigma(n, 5)-70*(n+1)*sigma(n, 3)+(40*n^2+60*n+9)*sigma(n))/1920;
    
  • Python
    from math import prod
    from sympy import factorint
    def A374930(n):
        f = factorint(n).items()
        return (31*prod((p**(5*(e+1))-1)//(p**5-1) for p,e in f)-70*(n+1)*prod((p**(3*(e+1))-1)//(p**3-1) for p,e in f) + (20*n*((n<<1)+3)+9)*prod((p**(e+1)-1)//(p-1) for p, e in f))//1920 # Chai Wah Wu, Jul 24 2024

Formula

a(n) = (31*sigma_5(n) - 70*(n+1)*sigma_3(n) + (40*n^2+60*n+9)*sigma(n))/1920.