A374954 Positive integers k for which sqrt(k) < sqrt(p_1) + ... + sqrt(p_r), where p_1*...*p_r is the prime factorization of k.
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, 24, 28, 32, 36, 40, 48, 64
Offset: 1
Examples
24 = 2*2*2*3 is in the sequence, because sqrt(24) < sqrt(2) + sqrt(2) + sqrt(2) + sqrt(3).
Programs
-
Maple
A374954:=proc(k) local i,r,s,L; if not isprime(k) then L:=ifactors(k)[2]; r:=numelems(L); s:=0; for i to r do s:=s+sqrt(L[i,1])*L[i,2] od; s:=evalf(s^2); if k
A374954(k),k=4..64);
Comments