cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A374956 Decimal expansion of Muder's 1993 upper bound for the density of packing of unit spheres in the Euclidean 3-space.

Original entry on oeis.org

7, 7, 3, 0, 5, 5, 8, 9, 6, 5, 7, 6, 9, 0, 8, 8, 9, 0, 5, 5, 0, 2, 1, 7, 5, 5, 7, 0, 1, 5, 2, 9, 0, 4, 7, 3, 0, 8, 2, 6, 2, 4, 5, 1, 7, 5, 2, 1, 6, 2, 4, 9, 3, 4, 1, 8, 3, 0, 4, 3, 9, 6, 5, 6, 2, 4, 8, 8, 9, 2, 7, 5, 9, 6, 8, 6, 5, 0, 8, 8, 8, 0, 5, 0, 9, 1, 0, 5, 2, 5
Offset: 0

Views

Author

Paolo Xausa, Jul 25 2024

Keywords

Comments

See A374772 for an improved bound.

Examples

			0.77305589657690889055021755701529047308262451752162...
		

Crossrefs

Cf. A374772, A374837, A374955 (volume).

Programs

  • Mathematica
    Module[{beta, r, s},
      s[p_] := Pi - 5*ArcTan[Sqrt[(1 - 2*r^2)/(p*r^2)]];
      beta = 5*r*Sqrt[1 - 2*r^2]/(3*Sqrt[2]) + s[2]/6;
      r = SolveValues[4/13*Pi == 2*s[3] - Sqrt[8/3]*s[2] && r > 0, r, Reals];
      RealDigits[4*Pi/(39*beta), 10, 100][[1,1]]]

Formula

Equals 4*Pi/(39*beta), where beta = 5*r*sqrt(1-2*r^2)/(3*sqrt(2)) + (1/6)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))) and r is the positive solution to (4/13)*Pi = 2*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(3*r^2)))) - sqrt(8/3)*(Pi - 5*arctan(sqrt((1 - 2*r^2)/(2*r^2)))). See Corollary in Muder (1993), p. 352.
Equals (4/3)*Pi/A374955.
Showing 1-1 of 1 results.