cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A374961 Numbers k such that 2^k, 2^(k+1) and 2^(k+2) have the same number of terms in their Zeckendorf representation (A007895).

Original entry on oeis.org

5, 6, 1931, 4127, 26584
Offset: 1

Views

Author

Amiram Eldar, Jul 25 2024

Keywords

Comments

Numbers k such that A020908(k) = A020908(k+1) = A020908(k+2).
The corresponding values of A020908(k) are 3, 3, 763, 1660, 10596, ... .
a(6) > 10^5, if it exists.

Examples

			5 is a term since A020908(5) = A020908(6) = A020908(7) = 3.
763 is a term since A020908(1931) = A020908(1932) = A020908(1933) = 763.
		

Crossrefs

Subsequence of A374960.

Programs

  • Mathematica
    z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
    s[n_] := s[n] = z[2^n]; Select[Range[0, 4200], s[#] == s[# + 1] == s[# + 2] &]
  • PARI
    A007895(n)=if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ Charles R Greathouse IV at A007895
    lista(kmax) = {my(z1 = A007895(1), z2 = A007895(2), z3); for(k = 2, kmax, z3 = A007895(2^k); if(z1 == z2 && z2 == z3, print1(k-2 , ", ")); z1 = z2; z2 = z3);}
Showing 1-1 of 1 results.