cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374970 Number of ordered primitive solutions (x,y,z,w) to x*y + y*z + z*w + w*x = n with x,y,z,w >= 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 4, 0, 6, 4, 8, 0, 22, 0, 12, 16, 22, 0, 36, 0, 42, 24, 20, 0, 76, 16, 24, 32, 62, 0, 104, 0, 66, 40, 32, 48, 146, 0, 36, 48, 140, 0, 152, 0, 102, 120, 44, 0, 220, 36, 120, 64, 122, 0, 196, 80, 204, 72, 56, 0, 380, 0, 60, 176, 178, 96, 248, 0, 162, 88, 280, 0, 444, 0, 72, 208, 182, 120, 296, 0, 396
Offset: 1

Views

Author

Seiichi Manyama, Jul 26 2024

Keywords

Comments

a(n) = 0 if and only if n = 1 or n is prime. - Chai Wah Wu, Jul 26 2024

Crossrefs

Programs

  • PARI
    a(n) = sum(x=1, n, sum(y=1, n, sum(z=1, n, sum(w=1, n, (gcd([x, y, z, w])==1)*(x*y+y*z+z*w+w*x==n)))));
    
  • Python
    from math import gcd
    from sympy import divisors
    def A374970(n): return sum(1 for d in divisors(n,generator=True) for x in range(1,d) for y in range(1,n//d) if gcd(x,y,d-x,n//d-y)==1) # Chai Wah Wu, Jul 26 2024