cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A374963 a(n) = Sum_{k=1..n-1} sigma(k)*sigma_3(n-k).

Original entry on oeis.org

0, 1, 12, 59, 200, 526, 1184, 2399, 4368, 7656, 12316, 19586, 29008, 43244, 60272, 85543, 114000, 156163, 200652, 266504, 333968, 432570, 528704, 673706, 806200, 1008644, 1192584, 1467684, 1707328, 2084676, 2390848, 2882487, 3286168, 3913722, 4409584, 5237489
Offset: 1

Views

Author

Chai Wah Wu, Jul 25 2024

Keywords

Comments

Convolution of sigma with sigma_3.
In general, if k>=1, m>=1 and a(n) = Sum_{j=1..n-1} sigma_k(j) * sigma_m(n-j), then Sum_{j=1..n} a(j) ~ Gamma(k+1) * Gamma(m+1) * zeta(k+1) * zeta(m+1) * n^(k+m+2) / Gamma(k+m+3). - Vaclav Kotesovec, Sep 19 2024

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1,k] *DivisorSigma[3,n-k],{k,n-1}],{n,36}] (* James C. McMahon, Aug 11 2024 *)
  • Python
    from sympy import divisor_sigma
    def A374963(n): return sum(divisor_sigma(i)*divisor_sigma(n-i,3) for i in range(1,n))

Formula

Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / 64800. - Vaclav Kotesovec, Sep 19 2024

A376290 a(n) = Sum_{k=1..n-1} sigma_2(k) * sigma_3(n-k).

Original entry on oeis.org

0, 1, 14, 83, 324, 986, 2484, 5625, 11304, 21596, 37824, 64746, 103252, 163536, 244200, 364855, 517478, 741087, 1009244, 1394080, 1842690, 2470668, 3178188, 4171260, 5242610, 6735966, 8331338, 10511692, 12777898, 15922212, 19067506, 23429969, 27785000, 33707290
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 19 2024

Keywords

Comments

In general, if k>=1, m>=1 and a(n) = Sum_{j=1..n-1} sigma_k(j) * sigma_m(n-j), then Sum_{j=1..n} a(j) ~ Gamma(k+1) * Gamma(m+1) * zeta(k+1) * zeta(m+1) * n^(k+m+2) / Gamma(k+m+3).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[2, k]*DivisorSigma[3, n-k], {k, n-1}], {n, 1, 50}]
  • PARI
    a(n) = sum(k=1, n-1, sigma(k, 2) * sigma(n-k, 3)); \\ Michel Marcus, Sep 19 2024

Formula

Sum_{k=1..n} a(k) ~ Pi^4 * zeta(3) * n^7 / 37800.
Showing 1-2 of 2 results.