cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374978 a(n) = Sum_{i+j+k+l+m=n, i,j,k,l,m >= 1} sigma(i)*sigma(j)*sigma(k)*sigma(l)*sigma(m).

Original entry on oeis.org

0, 0, 0, 0, 1, 15, 110, 545, 2095, 6713, 18750, 47040, 108185, 231640, 467034, 894605, 1639680, 2891475, 4929660, 8155182, 13135080, 20651875, 31770970, 47923680, 70989801, 103454645, 148464520, 210155730, 293558265, 405325092, 553175000, 747508125, 999747750
Offset: 1

Views

Author

Chai Wah Wu, Jul 26 2024

Keywords

Comments

5-fold convolution of A000203.
Convolution of A000203 and A374977.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
          `if`(k=1, `if`(n=0, 0, numtheory[sigma](n)), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jul 26 2024
  • Mathematica
    b[n_, k_] := b[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[1, n]], Function[q, Sum[b[j, q]*b[n - j, k - q], {j, 0, n}]][Quotient[k, 2]]]];
    a[n_] := b[n, 5];
    Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Jul 11 2025, after Alois P. Heinz *)
  • Python
    from sympy import divisor_sigma
    def A374978(n): return sum(divisor_sigma(j)*sum((5*divisor_sigma(i+1,3)-(5+6*i)*divisor_sigma(i+1))*(5*divisor_sigma(n-j-i-1,3)-(5+6*(n-j-i-2))*divisor_sigma(n-j-i-1)) for i in range(1,n-j-2)) for j in range(1,n))//144

Formula

a(n) = Sum_{i=1..n-1} A000203(i)*A374977(n-i).
a(n) = Sum_{i=1..n-2} A000385(i)*A374951(n-i-1).
Column k=5 of A319083.
Sum_{k=1..n} a(k) ~ Pi^10 * n^10 / 28217548800. - Vaclav Kotesovec, Sep 20 2024