A374983 a(n) is the numerator of Sum_{k = 1..n} 1 / (k*A374663(k)).
0, 1, 3, 11, 47, 1199, 241199, 9696481199, 11752718467440661199, 15347376819435640471203267700016821199, 23554197523775043569951631809272942045755944094320810352530343995293765199
Offset: 0
Examples
For n = 3: A374663(1) = A374663(2) = A374663(3) = 2, 1/(1*2) + 1/(2*2) + 1/(3*2) = 11/12, so a(3) = 11.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..14
- Rémy Sigrist, Proof of Theorem, Aug 26 2024, revised Sep 01 2024.
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
Programs
-
Maple
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end: b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end: a:= n-> numer(s(n)): seq(a(n), n=0..10); # Alois P. Heinz, Oct 18 2024
-
Mathematica
s[n_] := s[n] = If[n == 0, 0, s[n - 1] + 1/(n*b[n])]; b[n_] := b[n] = 1 + Floor[1/((1 - s[n - 1])*n)]; a[n_] := Numerator[s[n]]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Apr 22 2025, after Alois P. Heinz *)
-
PARI
{ print1 (0); t = 0; for (n = 1, 10, for (v = c=ceil(1/(n*(1-t))), oo, if (t + 1/(n*v) < 1, t += 1/(n*v); print1 (", " numerator(t)); break;););); }
-
Python
from itertools import count, islice from math import gcd def A374983_gen(): # generator of terms p, q = 0, 1 for k in count(1): yield p m = q//(k*(q-p))+1 p, q = p*k*m+q, k*m*q p //= (r:=gcd(p,q)) q //= r A374983_list = list(islice(A374983_gen(),11)) # Chai Wah Wu, Aug 28 2024
Comments