cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A375028 Primes in A374965 in order of their occurrence.

Original entry on oeis.org

3, 19, 103, 463, 751, 283, 331, 103423, 313, 2671, 1543, 1783, 3823, 68863, 20287, 733, 757, 407896063, 2083, 1093, 2251, 1153, 2371, 1213, 2467, 41023, 2707, 2803, 1453, 119909605576788675546376149602926591, 98238463, 25903, 3405823, 3590143, 3733, 14983, 7603, 7723, 15607, 65306623, 537343, 69151, 3859801644442622798122887215978426484283282692686288680974641672159756287
Offset: 1

Views

Author

Harvey P. Dale and N. J. A. Sloane_, Jul 28 2024

Keywords

Comments

Sequences A050412 and A052333 suggest that it is possible that the present sequence has only finitely many terms. - N. J. A. Sloane, Jul 29 2024

Crossrefs

A373799 gives the indices where the primes appear in A374965.
A373804 gives the primes sorted into increasing or5der.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[!PrimeQ[a],2a+1,Prime[n+1]-1]}; Select[NestList[nxt, {1, 1}, 999][[;; , 2]], PrimeQ]
  • Python
    from itertools import islice
    from sympy import isprime, nextprime
    def A375028_gen(): # generator of terms
        a, p = 1, 3
        while True:
            if isprime(a):
                yield a
                a = p-1
            else:
                a = (a<<1)+1
            p = nextprime(p)
    A375028_list = list(islice(A375028_gen(),30)) # Chai Wah Wu, Jul 29 2024